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CHAPTER 1 

Executive Summary 

Microwave receivers play a vital role in Electronic Warfare (EW) environments for passive identification and 

localization of unknown targets emitting high-frequency electro-magnetic signals. These Receivers process signals 

received by Microwave band radars and majority of these receivers utilize analog signal processing tools and 

techniques. Microwave signals have very high frequency content and have wide bandwidths. As of now, there are 

no EW receivers that process microwave radar signals entirely in the digital domain. It is expected that, with 

the emergence of increasingly faster and inexpensive digital computers and high-speed A/D converters, digital 
processing of microwave signals would most certainly be the way of the future. One of the main purpose of this 
project had been to complement the research on Digital Microwave Receiver Design being conducted at the EW 
Laboratory at WPAFB, Dayton, Ohio. 

In addition to the digital receiver design problem, some fundamental theoretical aspects of several classical 
System Identification problems as well as high-speed implementation of various Signal Processing algorithms 

have also been addressed as part of this project. In particular, a unified framework has been developed for 
optimal estimation of rational transfer function parameters from prescribed Time-Domain or Frequency-Domain 
specifications. This powerful unifying theoretical framework for System Identification appear to have remained 
mostly unrecognized and un-utilized. Apart from the digital EW receiver design problem, the proposed theoretical 
foundation is expected to have a broad range of applications in rational modeling. 

High-speed implementation of digital signal processing algorithms on Multiprocessor Architecture is an im- 
portant topic of current interest in recent Signal Processing literature. In EW applications as well as in other 
hardware implementations of digital systems, high-speed architecture would no doubt play an important role. 

In view of this, high-speed hardware implementation of a few important signal processing algorithms have been 
addressed as the final part of this project. 

As noted above, significant progress has been made during the course of this research project. Several 
problems of current interest have been addressed and solved satisfactorily. Most of the new results were proposed in 
the original proposal although some intermediate work had been undertaken as the needs arose at the Wright Labs. 
This Final Technical Report contains the details of all the results of the research that have been accomplished 
over the entire period covered by the project. It may be noted that some of the results presented in this report 
were initiated as part of the work on the original proposal (Grant No. AFOSR-F49620-93-1-0014). 

The importance of any research may perhaps be best judged by the quality of publications it gen- 
erates. Consequently, a significant amount of time has been devoted on preparing Journal and Confer- 
ence articles in order to report the findings of this project. Most of the results contained in this report 
have been published/accepted/presented in internationally recognized and top quality Signal Processing Jour- 
nals/Conferences although some recent results are currently under review/preparation for future publication. 
The papers/publications ensuing from this research are listed at the end of this introductory Chapter. Copies of 
the papers and publications can be made available to the Program Monitor, if desired. 

The research conducted under this project can be categorized primarily into two broad themes, viz., 

(i) Digital EW Receiver Design Problems : The problems addressed are as follows : 

(a) A high-resolution method for AOA estimation using Minimum-Norm Method that does not rely on any 
Eigendecomposition 



(b) Statistical Perturbation Analysis of the DFT-based Minimum-Norm Method proposed in part-a. 

(c) A high-resolution Maximum-Likelihood method for frequency estimation that guarantees unit-circle 
roots 

(d) Two methods for superior estimation of AR and ARMA parameters when the observation data is noisy 

(e) Time-Domain algorithms for detection of Electronic Warfare Signals in the presence of Noise 

(f) Pipelined-Adaptive Tracking of Multiple Sinusoidal Frequencies. 

(ii) System Identification and Hardware Implementation Problems : 

(a) Optimal identification of 1-D Rational Systems from Input-Output Data 

(b) Optimal identification of 1-D Rational Systems in the Frequency Domain 

(c) Optimal Identification of All-Pole Rational Systems in Time-Domain 

(d) Design of Denominator Separable 2-D IIR Filters from Spatial-Impulse Response Data 

(e) Design of Denominator Separable 2-D IIR Filters from 2-D Frequency Response Data 

(f) Design of 2-D IIR Filters with non-separable denominator from Spatial-Impulse Response Data 

(g) High-speed pipelined implementation of 1-D Recursive Filters based on a new Distributed Look-Ahead 

scheme. 

(h) Optimal Estimation of LA filters. 

(i) High-speed pipelined implementation of 2-D Recursive Filters based on the Distributed Look-Ahead 

scheme proposed in part-g. 

The report is organized as follows: In Chapter 2, the research results on Digital EW receiver design related 
problems are reported whereas in Chapter 3, the System Identification and Hardware Implementation areas are 
covered with complete details. Individual Chapters are divided into several Sections by topics. In the following 
paragraphs the main results obtained in these each of these sections are summarized briefly. 

CHAPTER 2.   THE DIGITAL MICROWAVE RECEIVER DESIGN PROBLEM 

Section - 2.1 : Superresolution without Eigendecomposition : Method and Perturbation Analysis : 
Many existing high-resolution methods, such as MUSIC or Minimum-Norm Method, rely on special-purpose 
hardware or software for obtaining the signal and noise subspace eigenvectors of Autocorrelation (AC) matrices. 
In this project, we have developed a new DFT-based high-resolution frequency estimation algorithm which does 
not require any eigendecomposition and hence, it is much less computation intensive. It has been demonstrated 

that the DFT of the AC matrix (DFT-of-AC) essentially performs an equivalent task of separating the signal 
and noise subspaces. Furthermore, when the signal-subspace part of the DFT-of-AC vectors are used in MNM, 
almost identical high-resolution AOA estimates are produced. The results have been published as a Journal paper 
[110] and has been presented at ICASSP-94 [119]. It may be noted here that according to one of the anonymous 
reviewers of the journal paper, this work is a "significant breakthrough in source localization". 

In the later part of this Section, we present a detailed theoretical Perturbation Analysis of the estimates 
produced by the D-MNM algorithm. The theoretical results closely corroborate and confirm the superior perfor- 
mance observed in simulations. The results indicate that the high-resolution performance of D-MNM is uniformly 
superior than its eigen-based counterpart, especially at low SNR. The performance is also superior than the eigen- 
based root-MUSIC method at low SNR. Furthermore, D-MNM appears to provide better success rate among all 



methods at low SNR. Close match between the theoretical and simulated performance verifies the validity of the 
formulae derived here. Preliminary work has been presented at ASILOMAR-94 [118] and a detailed version is 

under preparation for a Journal paper [125]. 

Section - 2.2 : Maximum-Likelihood Method with Exact Constraints : A recently proposed approximate 
Maximum-Likelihood Estimator (MLE) of multiple exponentials, converts the frequency estimation problem into 

a problem of estimating the coefficients of a ^-polynomial with roots at the desired frequencies. Theoretically, 

the roots of the estimated polynomial should fall on the unit circle. But MLE, as originally proposed, does not 

guarantee unit circle roots. This drawback sometimes causes merged frequency estimates, especially at low SNR. 

If all the sufficient conditions for the ^-polynomial to have unit circle roots are incorporated, the optimization 
problem becomes too nonlinear and it loses the desirable weighted-quadratic structure of MLE. In this work, the 

exact constraints are imposed on each of the lst-order factors corresponding to individual frequencies for ensuring 
unit circle roots. The constraints are applied during optimization alternately for each frequency. In the absence of 
any merged frequency estimates, the RMS values more closely approach the theoretical Cramer-Rao (CR) bound 
at low SNR levels. The work has been published as a Journal paper [15]. 

Section - 2.3 : Improved AR-Parameter Estimation From Noisy Observation Data : Auto-Regressive 
(AR) modeling is the most widely used approach for model-based spectrum estimation. But almost all the 
existing methods for AR-parameter estimation show severe degradation if the observed signal is corrupted with 
noise. In fact, all the commonly used techniques, such as, Autocorrelation Method (AM), Covariance Method 
(CM), Modified Covariance Method and their variations, give poor Power Spectral Density (PSD) estimates 
when the observations are noisy. In this part of the project, a data-adaptive pre-filtering approach is presented 

to address this problem. The results indicate that when only noisy data is available for modeling, the proposed 
technique gives more accurate PSD estimates than the commonly used methods. A conference paper on this work 
have been accepted [121] and a more comprehensive version is under preparation for publication as a Journal 
paper. 

Section - 2.4 : Improved ARMA-Parameter Estimation From Noisy Observation Data : Existing 
methods for ARMA modeling assume that the available process is produced by an ARMA system driven by a 

white input process, i.e., the observed process is considered to be pure ARMA. In practice, the available data 
usually have observation noise added to it but the ARMA methods do not address this problem. Simulations 
show that performance of the existing ARMA methods deteriorate when the observation process is noisy. In this 
part of the project a new ARMA algorithm is given which utilizes a recently developed deterministic rational 
system identification method (OM-IO) that minimizes the modeling or output error norm. The algorithm first 
estimates the input process and then invokes OM-IO using the input-output data. Simulations indicate that the 
proposed method is quite effective even at low SNR observation data. A conference paper on this work has been 
accepted [120] and a more comprehensive version is under preparation for publication as a Journal paper. 

Section - 2.5 : Time-Domain Detection of Electronic Warfare Signals in Noise : Almost all existing 
AOA/RF estimation algorithms assume that the signal is already present in the observed data. But in the passive 
mode of operations of EW applications, source signals may not be present at all within the observation window, 
or the signals may fill only a part of the estimation window. In either case, any frequency estimation algorithm 
would essentially produce erroneous or noise frequencies because the observed signal would not satisfy the model 
assumed by the estimation algorithm. Considering the relatively high computational burden, any estimation 

method should be invoked only when a detection scheme indicates high probability of presence of threat. In 
this part of the project, the theory of detecting sinusoids from Quantized and Noisy time-domain observation 
samples have been developed. The theoretical work on single/multiple samples is mostly complete. Studies with 



Quantized data have also been performed and the results appear reasonably good. Lab tests for the Envelope 

Detection and Square-Law cases have been conducted at Wright Labs with satisfactory results. 

Section - 2.6 : Pipelined-Adaptive Tracking of Multiple Sinusoidal Frequencies : New Pipelined- 

Adaptive algorithms are proposed for tracking multiple Frequencies or Angles-of-Arrival (AOA) of moving targets. 
Pipelining of adaptive filters pose a critical challenge because of the timing mismatch arising from the feedback 
signals. In this work, some relaxation techniques have been utilized to pipeline adaptive algorithms for high- 
speed tracking of frequency/AOAs. Two adaptive tracking algorithms have been mapped into pipelined forms, 

namely Least-Mean Squares (LMS) and Recursive Least-Squares (RLS). Preliminary results have been presented 

at ISCAS-96 [115] and a Journal version is under preparation for possible publication [129]. 

CHAPTER 3.   SYSTEM IDENTIFICATION AND HARDWARE IMPLEMENTATION PROBLEMS 

Fundamental contributions have been made in 1-D and 2-D Rational System Identification theory. Several key 

journal papers have been published/accepted and a number of conference publications have also been generated. 

The proposed comprehensive framework encompasses a large class of Identification problems including, (a) Input- 
Output data [18, 124], (b) Impulse Response Data : AR case [19, 123], ARMA case [111] and (c) Frequency 
Response Data [13, 122], (d) Multivariable System Identification [17] and also for shaping Time responses of 
Minimum Phase Systems [14]. Key results are summarized below. 

Section - 3.1 : Identification of 1-D Rational Systems from Input-Output Data : A theoretical and 
algorithmic framework is proposed for optimal identification of rational transfer function parameters of discrete- 

time linear systems from Input-Output (10) data. The nonlinear criterion is theoretically decoupled into a purely 

linear problem for estimating the optimal numerator and a nonlinear problem for the optimal denominator. The 
proposed decoupled approach has reduced computational requirements when compared to existing algorithms 
which estimate the parameters simultaneously. This research has led to one Journal paper [18] and a Conference 

paper [124]. 

Section - 3.2 : Identification of 1-D Rational Systems in the Frequency Domain : A new Frequency- 
Domain (FD) approach has been developed for optimal estimation of rational transfer functions coefficients. The 
proposed method seeks to match any arbitrarily-shaped FD specifications in the Least-Squares (LS) sense. The 
desired specifications may be arbitrarily spaced in frequency. The design is performed directly in the digital domain 
and no analog to digital transformation is necessary. The proposed method makes use of the inherent mathematical 
structure in this rational modeling problem to theoretically decouple the numerator and denominator estimation 
problems into two smaller dimensional problems. The denominator criterion is nonlinear but possesses a weighted- 

quadratic structure which is convenient for iterative optimization. The optimal numerator is found linearly by 
solving a set of simultaneous equations. The decoupled criteria retain the global optimality properties. The 
performance of the algorithm is demonstrated with some simulation examples. This research has led to one 

Journal paper [13] and a Conference paper [122]. 

Section - 3.3 : Identification of All-Pole Rational Systems in Time-Domain : An algorithm is proposed 
for optimal estimation of the parameters of Auto-Regressive (AR) or all-pole transfer function models from 

prescribed impulse response data. The transfer function coefficients are estimated by minimizing the ^-norm of 
the exact model fitting error. Existing methods either minimize equation errors or modify the true non-linear 
fitting error criterion. In the proposed method, the multidimensional nonlinear error criterion has been decoupled 
into a purely linear and a nonlinear subproblem. Global optimality properties of the decoupled estimators 
have been established.   For data corrupted with Gaussianly distributed noise, the proposed method produces 



Maximum-Likelihood Estimates (MLE) of the AR-parameters. The inherent mathematical structure in the non- 
linear subproblem is exploited in formulating an efficient iterative computational algorithm for its minimization. 
The proposed algorithm provides an useful computational tool based on appropriate theoretical foundation for 

accurate modeling of all-pole systems from prescribed impulse response data. The effectiveness of the algorithm 
has been demonstrated with several simulation examples. This research has led to one Journal paper [19] and a 
Conference paper [123]. 

Section - 3.4 : Design of Denominator Separable 2-D IIR Filters : This work extends the 1-D results 
in [111] to 2-D system identification. In this part of the report, the optimal design of an important class of 

two-dimensional (2-D) digital IIR filters from spatial impulse response data is addressed. The denominator of 

the desired 2-D filter is assumed to be separable into two 1-D factors. The filter coefficients are estimated 

by minimizing the ^2-norm of the error between the prescribed and the estimated spatial domain responses. 
The denominator and numerator estimation problems are theoretically decoupled into separate problems. The 
decoupled criteria have reduced dimensionality. The denominator criterion is simultaneously optimized w.r.t. the 
coefficients in both dimensions using an iterative algorithm. The numerator coefficients are found in a straight- 
forward manner. If the desired response is known to be symmetric, the proposed algorithm can be constrained 

to have separable-denominators. Initial results have been published as a Journal paper [16] and some further 
developments are currently being considered [12]. 

Section - 3.5 : Optimal Frequency Domain Design of Denominator Separable Two-Dimensional 
Digital IIR Filters : Classical design techniques using Butterworth, Chebyshev or Elliptic polynomial are only 
limited particular types of design specifications, such as Bandpass, lowpass etc. A least-squares technique is 

presented for designing quarter-plane separable-denominator 2-D IIR filters to best approximate prescribed fre- 
quency domain (FD) specification of any arbitrary shape. Structured Matrix Approximation approach is utilized 
to show that the FD error vector is linearly related to the 2-D numerator coefficients whereas the relationship 
with the 2-D denominators is quasi-linear. Furthermore, the numerator and denominator estimation problems are 
theoretically decoupled. The quasi-linear relationship with the denominator is used to formulate an algorithm for 
iterative estimation of the denominator. The numerator is found in one step using the estimated denominator. 
Computer simulations show the effectiveness of the proposed method and its superior performance compared to 
several existing methods. This work has been presented at ICASSP-95 [117]. A detailed version is also under 
preparation for a Journal paper [130]. 

Section - 3.6 : Optimal Spatial-Domain Design of 2-D IIR Filters : In this Section we present a structured 
matrix approximation framework to develop the most general form for optimal least-squares (LS) design of 2-D 
recursive filters from prescribed spatial domain data. Unlike the work in Section 3.4, no separability is assumed 
for the 2D denominator. Utilizing matrix structures inherent in this problem it is shown that the exact l-i error 
has a purely linear relationship with the 2-D numerator parameters whereas the 2-D denominator coefficients are 
nonlinearly related to the error. But more interestingly, the denominator and numerator estimation problems 
are theoretically decoupled into separate problems without affecting any optimality properties. In the decoupled 
form, the numerator estimation problem is shown to be purely linear. For estimating the denominator also, it is 
shown that the decoupled £2 error vector possesses a quasi-linear relationship with the denominator coefficients. 
Decoupled estimation leads to reduced computational complexity because there is no need for iterating on the 
numerators. Simulation results indicate that for several common filer design problems, the proposed general 

version performs better than the separable design developed earlier in Section 3.4. Preliminary results have been 
presented at ISCAS-95 [115] and a Journal version is under consideration for possible publication [II]. 

Section - 3.7 : Distributed Look-Ahead : A General Approach for Pipelining Recursive Digital Fil- 



ters : A new Look-Ahead (LA) scheme, Distributed Look-Ahead (DLA), is proposed for pipelined implementation 

of recursive digital filters. It is established that in case of many recursive filters, DLA can provide equivalent and 
stable implementation with reduced pipeline delay and hardware complexity, when compared with some existing 
LA schemes. The existing Scattered Look-ahead implementation achieves stability at the cost of increased multi- 

plication and latch complexities and considerable delay in output generation. The Clustered look-ahead approach 

can not always guarantee stability. This work shows that, in order to attain stability, the output samples need 
not be clustered or equally scattered. Indeed, in many filter design problems, stability can be maintained by using 

unequally distributed past output samples. When compared with the scattered approach, the proposed scheme 

uses fewer number of pole-zero cancelations and the introduced roots are not necessarily at the same radii as 

the original filter poles. Hence, the proposed DLA scheme has reduced multiplication and latch complexities, 
higher area-efficiency and it produces outputs with reduced delays. Preliminary results have been presented at 

ICASSP-96 [113] and ISCAS-96 [114] and a Journal version is under preparation for possible publication [126]. 

Section - 3.8 :  Optimal Least-Squares Design of Pipelined Recursive Filters in the Time-Domain 
: Currently, look-ahead (LA) pipelined recursive filters are obtained primarily via transformation of a given 

un-pipelined transfer function. For these approaches, it is assumed that the un-pipelined transfer function has 

already been designed as an intermediate step. In this Section, we present a new algorithm (OM-LA) for direct 

and optimal estimation of the coefficients of recursive filters in look-ahead pipelined form. OM-LA is developed by 
appropriate modification of a recently proposed optimal method (OM) for designing un-pipelined filters (developed 
previously by the PI as part of a project supported by the AFOSR). It is demonstrated that the proposed one-step 
approximation can achieve superior match with reduced pipelined filter order because it does not rely on pole-zero 
cancelations as in current LA pipelining approaches. It is also shown that the denominator polynomial can be 
constrained to possess any of the possible look-ahead configurations. Unlike some existing methods, OM-LA 
minimizes the true time-domain fitting error-norm between the prescribed and the estimated impulse response 
and produces superior results. Preliminary results have been presented at ICASSP-96 [112] and a Journal version 
is under preparation for possible publication [127]. 

Section - 3.9 : Pipelined Look-Ahead Implementation of a Class of 2-D IIR Filters : In Section-3.7, 
we have presented a new scheme (referred to as distributed look-ahead) which is a compromise between the two 

existing look-ahead approaches for high speed implementation of 1-D Recursive Digital filters. To date neither 

the Scattered Look-ahead nor the Distributed scheme has so far been utilized for 2-D IIR filter implementation, 

primarily because the 1-D stability properties of these LA schemes do not necessarily translate to general 2-D 
IIR filters. The primary focus of this paper is to demonstrate that for a special but very important class of 2-D 
IIR filters, namely for Denominator Separable configurations, the benefits of these stable look-ahead schemes can 
indeed be taken advantage of. The results will be submitted for review to ASILOMAR-97 which will be held in 
November at Naval Postgraduate School [128]. A detailed version is also under preparation for a Journal paper 
[131]. 

Journal and Conference Articles - Published/accepted/under review 

[II] A. K. Shaw and S. Pokala, "A Structured Matrix Approach for Spatial Domain Design of 2-D IIR Filters," 
IEEE Transactions on Circuits and Systems, accepted for publication Aug., 1996. 

[12] A. K. Shaw and S. Pokala, "Spatial Domain Design of Denominator Separable Multidimensional IIR Filters," 
Multidimensional Systems and Signal Processing, under 2nd review, Sep., 1995. 

[13] A. K. Shaw, "Optimal Design of Digital IIR Filters by Model-Fitting Frequency Response Data," IEEE 



Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 11, pp. 702-710, 

Nov., 1995. 

[14] P. Misra and A. K. Shaw, "Shaping Time Response by State Feedback in Minimum-Phase Systems," Journal 

of Control, Guidance, and Dynamics, vol. 18, no. 4, pp. 913-916, Jul.-Aug., 1995. 

[15] A. K. Shaw, "Maximum Likelihood Estimation of Multiple Frequencies with Constraints to Guarantee Unit 

Circle Roots," IEEE Transactions on Signal Processing, vol. 43, no. 3, pp. 796-799, Mar., 1995. 

[16] A. K. Shaw, "Design of Denominator Separable 2-D IIR Filters," Signal Processing, Switzerland, vol. 42, no. 

1, pp. 191-206, Feb., 1995. 

[17] A. K. Shaw, P. Misra and R. Kumaresan, "Multi-Dimensional System Identification From Impulse Response 
Data," Circuits, Systems and Signal Processing - Special Issue on Multivariable Systems, vol. 13, no. 6, pp. 
759-782, Dec, 1994. 

[18] A. K. Shaw, "A Decoupled Approach for Optimal Estimation of Transfer Function Parameters from Input- 

Output Data," IEEE Transactions on Signal Processing, vol. 42, no. 5, pp. 1275-1278, May, 1994. 

[19] A. K. Shaw, "Optimal Estimation of the Parameters of All-Pole Transfer Functions," IEEE Transactions on 

Circuits and Systems, vol. 41, no. 2, pp. 140-150, Feb., 1994. 

[110] A. K. Shaw and W. Xia, "Minimum-Norm Method Without Eigendecomposition," IEEE Signal Processing 

Letters, vol. 1, no. 1, pp. 12-14, Jan., 1994. 

[Ill] A. K. Shaw, "Optimal Identification of Discrete-Time Systems from Impulse Response Data," IEEE Trans- 

actions on Signal Processing, vol. 42, no. 1, pp. 113-120, Jan., 1994. 

[112] S. Pokala, A. K. Shaw and M. Imtiaz, "Optimal Least-Squares Design of Pipelined Recursive Filters in 
the Time-Domain," IEEE International Conference on Acoustics, Speech and Signal Processing, Atlanta, 

Georgia, May, 1996. 

[113] A. K. Shaw and M. Imtiaz "New Look-Ahead Algorithm for Pipelined Implementation of Recursive Digital 
Filters," IEEE International Conference on Acoustics, Speech and Signal Processing, Atlanta, Georgia, May, 

1996. 

[114] A. K. Shaw and M. Imtiaz "A General Look-Ahead Algorithm for Pipelining IIR Filters," International 

Symposium on Circuits and Systems, Atlanta, Georgia, May, 1996. 

[115] M. Imtiaz and A. K. Shaw "Tracking of Multiple Targets using Pipelined-Adaptive Algorithm," International 

Symposium on Circuits and Systems, Atlanta, Georgia, May, 1996. 

[116] S. Pokala and A. K. Shaw, "Optimal Spatial Domain Design of 2-D IIR Filters," IEEE International Sym- 

posium on Circuits and Systems, Seattle, Washington, pp. 1335-1338, April, 1995. 

[117] S. Pokala and A. K. Shaw, "Optimal Frequency Domain Design of Denominator Separable Two-Dimensional 
Digital IIR Filters," IEEE International Conference on Acoustics, Speech and Signal Processing, Detroit, 

Michigan, pp. 2133-2136, May, 1995. 

[118] A. K. Shaw and W. Xia, "DFT-Based Preprocessing for High-Resolution Angles-of-Arrival Estimation With- 
out Eigendecomposition," Twenty-Seventh ASILOMAR Conference on Signals, Systems and Computers, 

Pacific Grove, CA, pp. 826-830, Oct., 1994. 

[119] A. K. Shaw and W. Xia, "High-Resolution Angles of Arrival Estimation using Minimum-Norm Method 

Without Eigendecomposition," IEEE International Conference on Acoustics, Speech and Signal Processing, 

Adelaide, Australia, vol. IV, pp. 233-236, April, 1994. 



[120] A. K. Shaw and S. Kundu, "Improved ARMA Modeling from Noisy Observations," Twenty-Seventh ASILO- 
MAR Conference on Signals, Systems and Computers, Pacific Grove, CA, Oct., 1993. 

[121] A. K. Shaw and S. Kundu, "AR-Spectrum Estimation from Noisy Observation Data," Twenty-Seventh 

ASILOMAR Conference on Signals, Systems and Computers, Pacific Grove, CA, Oct., 1993. 

[122] A. K. Shaw, "Optimal Design of Digital IIR Filters by Model-Fitting Frequency Response Data," IEEE 

International Symposium on Circuits and Systems, Chicago, IL, pp. 475-478, May, 1993. 

[123] A. K. Shaw, "Optimal Estimation of AR-Model Parameters from Impulse Response Data," 31st IEEE Con- 
ference on Decision and Control, Tucson, AZ, pp. 903-908, Dec, 1992. 

[124] A. K. Shaw, "A New Algorithm for Optimal Estimation of Plant Parameters from Input-Output Data," 31st 

IEEE Conference on Decision and Control, Tucson, AZ, pp. 1684-1685, Dec, 1992. 

[125] A. K. Shaw and W. Xia, "Superresolution without Eigendecomposition : Method and Perturbation Analysis," 
Under Preparation for IEEE Transactions on Aerospace and Electronic Systems. 

[126] A. K. Shaw and M. Imtiaz, "Distributed Look-Ahead : A General Approach for Pipelining Recursive Digital 
Filters," Under Preparation for IEEE Transactions on Circuits and Systems. 

[127] A. K. Shaw and M. Imtiaz, "Optimal Least-Squares Design of Pipelined Recursive Filters in the Time- 
Domain," Under Preparation for IEEE Transactions on Circuits and Systems. 

[128] A. K. Shaw and M. Imtiaz, "Look-Ahead Pipelined Implementation of a Class of 2-D IIR Filters," Under 
Preparation for Thirty-First ASILOMAR Conference on Signals, Systems and Computers, Pacific Grove, 

CA, Oct., 1997. 

[129] A. K. Shaw and M. Imtiaz, "Pipelined-Adaptive Tracking of Multiple Sinusoidal Frequencies," Under Prepa- 
ration for IEEE Signal Processing Letters. 

[130] S. Pokala and A. K. Shaw, "Frequency Domain Design of Two-Dimensional Digital IIR Filters : Denominator 
Separable Case," Under Preparation for IEEE Transactions on Circuits and Systems. 

[131] A. K. Shaw and M. Imtiaz, "Pipelined Look-Ahead Implementation of Denominator-Separable 2-D IIR 
Filters," Under Preparation for IEEE Transactions on Circuits and Systems. 

Personnel Invloved 

Dr. Arnab K. Shaw (PI) 

Mr. Wei Xia (Graduate Student) 

Mr. Srikanth Pokala (Graduate Student) 

10 



CHAPTER 2 

THE DIGITAL MICROWAVE RECEIVER DESIGN PROBLEMS 

Introduction 

Digital processing of microwave signals in Electronic Warfare (EW) environment poses a great challenge to 
researchers in Signal Processing. Along with the standard requirements of any conventional radar, EW receiver 
design problem is complicated by the fact that no knowledge about the input signal is available to the receiver. 
The nature of the problem also requires that measurements and decisions be taken immediately or within a 
few seconds in an entirely passive mode of operation. All microwave receivers used in practice utilize analog 

signal processing techniques. The frequency-band of the EW signals are in the GHz range and the signals have 

wide bandwidths which necessitate sampling and processing of a massive amount of data at or near real-time. 

Presently, no EW receiver processes microwave radar signals entirely in the digital domain. But it is expected 

that with the emergence of increasingly faster and inexpensive digital computers and high-speed A/D converters, 

digital processing of microwave signals would most certainly be the way of the future. 

In the past two decades, many classes of radar and sonar receivers have been converted from conventional 
analog technology to purely digital or hybrid systems, but EW receivers are yet to make such a transition. The 
primary technological factors that have been holding back possible fabrication of any digital EW receiver are 
probably twofold. Firstly, if Analog-to-Digital (A/D) converters are to be used at the operating frequency range, 

then the Nyquist rate would necessitate sampling at the GHZ range and secondly, the digital hardware or firmware 
must have the capacity to process such high data rate and produce effective results at near real-time. 

Digital EW receivers can be expected to offer some major advantages over their analog counterparts. Foremost 

among these is the almost lossless storage capability of digital memories which can eliminate the dependence on 
lossy analog delay lines. Digital processors and memory chips are relatively inexpensive, compact in size and have 
low weight and the trends are towards even further reductions. Digital signal processing algorithms and digital 
computing technology have matured tremendously and offer a wide range of capabilities. Parallel processing, 
pipelining, RISC, VLSI design, systolic architecture, vectorization and array processing, fault tolerant computing 

and etc., are only some of the well-known aspects of digital computing that the last few decades of research have 
produced. As our research progresses, we intend to study if some of these ideas can be incorporated in the digital 
receiver in order to improve the efficiency and accuracy of its performance. 

The primary task of a microwave receiver is to gather data for sorting of signals and for identifying the 
radar-type. Based on these information, jamming, weapon delivery or other options are considered. In order to 
perform these tasks, the receiver must analyze the received radar pulses and measure or estimate the following 
six parameters : Angle-of-Arrival (AOA), Radio Frequency (RF), Time of Arrival (TOA), Pulse Amplitude (PA), 
Pulse Width (PW) and Polarization (P). 

A critical requirement of an EW receiver is the AOA measurement which is known to be a rather difficult 
multidimensional nonlinear optimization problem, especially when multiple closely-spaced threats are to be re- 
solved. It is also desirable to have high sensitivity and large dynamic range such that a broad range of signals, 
including weak ones, can be detected. 

As part of this project several AOA/frequency estimation algorithms has been developed and studied. Most 
existing high-resolution frequency-estimation algorithms rely on special-purpose hardware or software, such as, 
Eigendecomposition or SVD. In Section 2.1, a DFT-based Minimum-Norm method is proposed which does not 
require any eigendecomposition but produces high-resolution frequency estimates.   This new algorithm needs 
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only to compute the DFT of the Autocorrelation matrix to separate the signal and noise subspaces. Hence the 
computational burden is much lower than existing high-resolution methods. Therefore, this algorithm appears 

to be very well-suited for EW applications. The Statistical Performance Analysis of this new algorithm has also 
been performed and the results are included in Section 2.1 also. 

Another new class of algorithms, referred to as KiSS/IQML, have been developed recently for obtaining 
the Maximum Likelihood Estimates (MLE) of frequencies or AOAs from the roots of z—polynomials. But the 

estimated roots are not guaranteed to fall on the unit circle, as desired. Based on the theory on zeros of 

polynomials, a new scheme is proposed in Section 2.2 here that will ensure unit circle roots. Many frequency 
estimation methods make use of the property that a sinusoidal process can be modeled as a limiting case of a 

narrow-band auto-regressive (AR) process. But the performance of all existing AR parameter estimation methods 
degrade significantly when the observation data is corrupted with noise. A pre-filtering approach is presented 
in Section 2.3 that can improve AR-parameter estimates from noisy observation data. Another data-adaptive 

approach for improved modeling of ARMA processes from noisy observations is given in Section 2.4. 

Parameter estimation schemes either follow or work in parallel with a detection scheme ensuring the presence 
of any threat. A combined detection-estimation scheme has the potential to cut-down computational burden on 
the signal processor. As a part of this project, statistical theory on hypothesis testing has been utilized for 

detecting whether a threat is present or not. In Section 2.5, the time-domain detection problem has been 
presented for single and multiple samples. Specifically, the detection thresholds and Probability of Detection 

based on Neyman-Pearson Criterion have been derived. 

The AOA estimation algorithms presented in Sections 2.1-2.2 work on batch mode where the targets are 
assumed to be "locally stationary". However, in many practical situations the targets may be non-stationary an 
it is desirable to track its movements adaptively. In these regards, Pipelined-Adaptive algorithms are proposed 
in Section 2.6 for tracking multiple Frequencies or Angles-of-Arrival (AOA) of moving targets. Pipelining of 
adaptive filters pose a critical challenge because of the timing mismatch arising from the feedback signals. In this 
work, some relaxation techniques have been utilized to pipeline adaptive algorithms for high-speed tracking of 
frequency/AOAs. 
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Section    -     2.1     :        SUPERRESOLUTION    WITHOUT    ElGENDECOMPOSITION    :    METHOD    AND 
PERTURBATION ANALYSIS 

SUMMARY 

Many existing methods for estimating closely spaced sinusoidal frequencies utilize the eigenvectors of Auto- 

correlation (AC) matrices [1, 10, 15, 26, 30]. Instead, this work considers the use of the DFT of AC matrices 

(DFT-of-AC) for extracting the signal and noise subspaces. When the signal-subspace part among the DFT-of-AC 

vectors are used in the Minimum-Norm method (MNM) framework, almost identical high-resolution frequency 
estimates are produced. Theoretical Perturbation Analysis of the proposed DFT-based MNM (D-MNM) has also 

been carried out. The analysis confirms that the estimates are theoretically unbiased and have lower theoretical 
Mean-Squared Error indicating improved high-resolution performance, especially at low SNR. The primary advan- 
tages of extracting signal/noise subspace information from DFT-of-AC are reduced computational and hardware 
complexity than existing methods that need to perform the Eigendecomposition iteratively. 

I:   INTRODUCTION 

In many important practical applications, such as radar, sonar and astronomy etc., the resolution capability 

of FFT is inadequate. Overcoming the resolution limitation of DFT has been a vigorously researched topic 
in Signal Processing in the past three decades. The modern methods attain the desired 'High-Resolution' or 

'Superresolution' at the cost of considerable computational burden. The existing well-known methods often utilize 
Eigen-Decomposition (ED), Singular Value Decomposition (SVD) or Maximum Likelihood (ML) method which 
is based on nonlinear optimization [1-5, 8-10, 14-20, 22-24, 26, 29, 30, 32-37, 42-45, 48, 49]. These algorithms, 
though highly effective, can only be implemented iteratively because of their inherent nonlinearity, which limits 
their real-time capabilities. 

The primary objective of this paper is to effectively combine the computational simplicity of DFT with the 
underlying mathematical philosophy of certain high-resolution methods. The desired goal is to achieve high- 
resolution without any iterative optimization. Specifically, many existing high-resolution techniques, such as the 

Minimum-Norm method (MNM), extract the signal and noise subspace information from the eigenvectors of the 
Autocorrelation (AC) matrices [15, 26]. It is shown in this paper that the DFT of the AC-matrix (DFT-of-AC) 
essentially performs an equivalent task of extracting and decoupling the signal and noise subspace information. 
Hence, it is proposed that the signal eigenvectors be replaced by the largest-norm DFT-of-AC vectors. It is 
demonstrated that when the DFT-of-AC vectors with larger norms are used in the MNM framework, mostly 
better or almost equivalent high-resolution DOA estimates are produced. The bias, mean-squared error and 
the root locations of the proposed DFT-based-MNM (D-MNM) also compare well with the Eigendecomposition- 
based MNM (E-MNM). The simulations further show that the high-resolution performance of the D-MNM is 
more robust at low SNR. 

In order to establish theoretical justification of the performance of the D-MNM algorithm, we have also 
conducted theoretical Perturbation Analysis of the estimates produced by the algorithm. The theoretical study 
corroborates closely with the superior performance already observed in simulations. The details of the following 

are included after introducing the method. Firstly, the Bias and the Mean-Squared-Error (MSE) in the estimates 
of the AOAs are shown to be linearly related to the Bias and MSE in the roots of the D-MNM polynomial 
which, in turn, are shown to depend on the Bias and MSE for the D-MNM coefficient vector. Then the statistics 
of the coefficient error are related to those of the observed data and the AC matrix estimate. Finally, all 
the intermediate results are combined and utilized to find the direct statistical relationship between the AOA 
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errors and the observations. The theoretical results indicate that the high-resolution performance of D-MNM is 

uniformly superior than its eigen-based counterpart, especially at low SNR. The performance is also superior than 
the eigen-based root-MUSIC method at low SNR. Furthermore, D-MNM appears to provide better success rate 

among all methods at low SNR. The theoretical analysis closely follows the performance with simulated data, 

which verifies the validity of the formulae derived here theoretically. 

The major significance of the proposed algorithm is that, no complicated iterative optimization is needed and 

the signal-subspace information is extracted only by a single matrix multiplication. Hence, hardware implementa- 
tion of D-MNM for real-time high-resolution AOA/Frequency estimation may be feasible with currently available 

technology. It may be noted here that results on some preliminary simulations on the DFT-based method was 
presented in [38, 39], though no performance analysis was available at the time. 

The paper is organized as follows. In Section II, the AOA estimation problem is defined and in Section III 

some existing approaches are discussed. Some useful properties of the AC matrix are given in Section IV. Then in 
Section V, the proposed D-MNM algorithm is described. In Section VI, the details of the Perturbation analysis of 

D-MNM are presented. Some simulation results are given in Section VII and, finally the paper is wrapped with 

some concluding remarks in Section VIII. 

II:   PROBLEM DEFINITION 

This paper addresses the problem of estimating of the Directions of Arrival (DOA) of densely spaced narrow- 
band targets. Suppose that p plane waves originating from far-field point sources at distinct directions impinge 
on a linear array of N equally spaced sensors. The signal sampled simultaneously at mth instant of time at N 

equally spaced sensors form a 'snapshot' vector defined as, 

xm A [im(0) arm(l)   ...   xm(N - 1)]*. (11.1) 

In the presence of noise, the observation samples can be written as, 

xm(n) = xm(n) + zm{n) (77.2) 

where, zm[n) represents the additive observation noise and/or the modeling error and xm{n) denotes the signal 
part of the observation, which is given by 

xm(n) =  ^iMOeW" - ^)sine- + i*»« „ = 0,1,...,W-1 (77.3) 
1=1 

where, 
p : Number of narrowband sources present 
d : Spacing between sensor elements 
A : Wavelength of radiation of the received signals 
Oi : Direction-of-Arrival (DOA) of the ith source 
Am (i) : Amplitude of the ith source at the mth snapshot 
<f>m(i) : Phase angle of the ith source at the mih snapshot, 

Uniformly distributed between —7r and ir. 

The noise zm(n) is assumed to be zero-mean and uncorrelated with the source signals and it has a variance of <r\. 

The signal model can be written in a more succinct form as, 

xm(n) =   J2Ai™eJW'n (JL4) 
»=i 

14 



where, w, and Aim are defined as 

A   2TTC?  . 
Ui A —— sin ( 

==       A 

iiraA4m(i)e-^(^)sm^ +^-«. 

(//.5) 

(77.6) 

Further details about the above model may be found in [6].   With the above formulation the model for the 
observation matrix can be written as, 

XATA 

where, 

T A 

1 1 

eM(JV-l)     eJu,3{N-l) 

A [ti t2   •••  tp], 

A A   [ ai a2   ...  &M ] and 

1 

pju>r{N-l) 

am A 

Aim 

Aim 

^■pm J 

for m = 1,2,.. .,M. 

(77.7) 

(71.8) 

(77.9) 

(77.10) 

(77.11) 

For half wavelength spacing between two successive sensors of the line array, w,- = w sin 0;. With M snapshot 

vectors defined in (77.2), the N x M observation matrix X is formed as, 

X A [xi x2   ...  xM]. 

Using the observation matrix, the spatial covariance matrix can be estimated as, 

C A JL(XX") 

1  M 

tuE^m- 

(77.12) 

(77.13a) 

(77.136) 
m=l 

The description of the observation and the model is now complete. Given the noisy observation matrix X, the 
problem under consideration in this paper is to estimate the w,-'s and Aim's. Note that the complex amplitudes 

can be estimated linearly once the w,'s are known but the estimation of w,-s poses the greatest difficulty because 
it is a highly nonlinear optimization problem. 

Ill: EXISTING METHODS 

It is apparent from the problem statement that the DOA (0,-) estimation problem is mathematically equivalent to 
the Frequency Estimation (w,-) problem which has been a major research topic in many areas of science. Indeed, 
in the last couple of hundred years, the search for 'hidden periodicities' from observed data has appeared in varied 

forms in several seemingly differing disciplines of science. 

Ill.a : The Periodogram and its Resolution Limitation 
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Ever since its discovery in 1965 [6], the FFT has been the primary tool for estimating Directions of Arrival 

(DOA) or frequencies of far-field sources from noisy observation data. The software or hardware implementation 
of FFT is remarkably straight-forward. To date, the periodogram continues to be the most frequently used 

method for frequency/DOA estimation [21, 27]. In fact, it is well known that for localizing a single target, if 
the noise in the observed data is Gaussianly distributed, the periodogram [27] produces the maximum likelihood 

estimate. But in case of multiple targets, the periodogram cannot resolve two frequencies which are separated 
by less than the bin-width of the FFT. In fact, when the sources are spaced at less than the DFT bin-width, 
the periodogram fails to distinguish two closely spaced frequencies and only provides a single frequency estimate 

instead of two. The last statement truly portrays the problem one faces while resolving two closely spaced sinusoids 

when a relatively short data record is available. Clearly, if any amount of data is available for processing, the 
periodogram of sufficiently Zero-padded (and possibly Windowed) data will provide reasonably good estimates. 

But in many problems of practical interest only short data record is available and one has to overcome the 

periodogram's resolution limitation by resorting to what are commonly known in the signal processing literature 

as 'High-Resolution' or 'Superresolution' techniques. The major contributions in the higher resolution approaches 
are highlighted next. 

Ill.b : High-Resolution Methods 

A multitude of DOA/Frequency Estimation algorithms, their variations and analysis are available in the 
literature [1-5, 7-20, 22-26, 28-30, 32-49]. In the following paragraphs only some of the major developments are 
briefly discussed. 

Minimum Variance Method : This was perhaps the earliest high resolution methods which was specifically devel- 
oped for frequency-wavenumber estimation. In order to improve upon Periodogram's resolution limit, Capon had 

proposed a Minimum Variance method which is a linear estimator that minimizes the interference at frequencies 
outside the band of interest [4]. Its performance has been shown to be better than the periodogram estimator 
but worse than the modeling based estimators [20]. 

Model-Based Methods : A major motivation for many modern high-resolution frequency estimation methods has 
come from the desire to achieve more exact models for the sinusoids-in-noise data. In the Parameter Estimation 
area of statistical time-series analysis, it had been well established that Auto-Regressive (AR) modeling is very 

appropriate for modeling data with peaky spectra. But in the frequency estimation field also, it had been a 
common knowledge that data composed of sinusoids in noise tend to have peaky spectra. Consequently, frequency 

estimation based on AR-modeling has received considerable attention [3, 9, 24, 29]. 

Depending on how the autocorrelation values are estimated, there are three types of AR parameter estimation 
methods, namely, Autocorrelation method, Covariance method and Modified Covariance method (also known as 
the Forward-Backward method). The later two cases are more appropriate for sinusoidal processes because of 
their implicit relationship with Prony's method which provides perfect frequency estimates when no noise is 
present. Incidentally, the Maximum Entropy method proposed by Burg [7] and the Linear Prediction based 
spectral estimator [9] both produce essentially identical frequency estimates as the Covariance method. 

When p sinusoids are present and a pth order AR model is used, the frequency estimates are found to be 
poor at low SNR (< 30(iS). To circumvent this hurdle, larger order (L > p) AR model has been proposed [25, 
60]. The larger model order tends to accommodate a major part of the interfering noise and thereby reduces the 
effect of noise in the estimates. The larger-order approach performs poorly below 20dB SNR. 
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Eigen-Analysis of the Auto-Correlation Matrix of Sinusoid-in-Noise Data : AR modeling based approaches offer 

better resolution performance than their predecessors but these as well as the earlier methods are basically 
general spectrum estimation methodologies applied to this specific narrow-band problem. Since the mid-to-late 
seventies, a whole new class of algorithms are being developed by effective exploitation of the special properties 
of the autocorrelation matrix of the sinusoids-in-noise data. For N = p+ 1, the eigendecomposition of C was first 

utilized by Pisarenko [23] who showed that the ^-polynomial formed with elements of the eigenvector corresponding 
to the smallest eigenvalue has roots at the signal frequencies. Though the idea is elegant, Pisarenko's method 

performs quite poorly for noisy signals. Pisarenko's approach was later improved upon by Kumaresan [15] where, 
for N > p cases, all the noise eigenvectors had been utilized. As an alternate approach, it was shown in [15] that 

the signal subspace eigenvectors can also be utilized to form a noise subspace vector which should have zeros at 
the signal frequency locations. This was achieved in [15, 26] by formulating a Minimum-Norm criterion which is 

the framework that will be used in the proposed work. 

Another major improvement on Pisarenko's approach was presented by Schmidt [30] and Bienvenue and 

Kopp [1]. They proposed to combine the eigenvectors corresponding to the (L — p) smaller eigenvalues of C and 
used an orthogonality criterion to obtain the frequency estimates. In the literature, this approach is known as 

the 'MUSIC method. 

It may be pertinent to emphasize here that the approach proposed in this work for extracting signal or noise 

subspace 'without eigendecomposition' may be combined with either the MNM or the MUSIC framework. The 
MNM framework has been preferred in the development in Section V because in case of the Minimum-Norm 
method, the frequencies are found directly from the polynomial roots. On the other hand, a search procedure 
is necessary in case of MUSIC for estimating the frequencies. The polynomial version of MUSIC, known as 
'root-MUSIC, could also be used but in that case the order of the z-polynomial would be twice that of MNM. 

Maximum-Likelihood Method : This class of algorithms maximize the likelihood function for the observed data, 
leading to optimization of a non-linear criterion which can only be performed iteratively. Several different ap- 
proaches are available in the literature [16-18, 27-29, 33-35, 37, 48] among which the recently proposed Constrained 
MLE approach developed [37] by the first author appears to offer the most accurate results. 

Other Methods and the Motivation for the Proposed Method : As listed in the references, there are a large number 
other methods that address the high-resolution Frequency/DOA estimation problems. In order to achieve the 

desired high-resolution capability, all these algorithms utilize some form of eigen-analysis or non-linear optimiza- 
tion, both of which are computationally intensive for real-time applications. The primary objective of this paper 
is to study whether the computational simplicity of DFT can be effectively combined with the underlying math- 
ematical framework of some of the existing high-resolution methods. The final goal is to achieve high-resolution 
without any iterative optimization such that real-time implementation may be feasible with existing hardware. 
The proposed method makes use of the special properties of correlation matrices which are outlined next. 

IV :   SOME PROPERTIES OF THE AUTOCORRELATION MATRIX 

Since the data described by (77.3) is uncorrelated, zero mean WSS process, the N x N (N > p) covariance 
matrix C will have the following matrix decomposition when there is no observation noise, 

C = TETff (7V.1) 

where, S A diag (a\ a\   ...  <7p) and of denotes the power of the i-th signal. Note that this ideal C has rank 
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p. In this case, the eigen-decomposition of C can be written as, 

CV =   [Aivi 

Ai 0 
0 A2 

0 0 
0 0 

ApVp    0 

0     0 
0     0 

Ap    0 
0 

0     0         0 

For observations with noise as defined in (77.3), 

C 

0]   = AV 

0 
0 

vi    v2 fP    VP+I VJV 

{IV.2a) 

{IV.2b) 

TST"  + (ril. (7K3) 

Note that this theoretical C has rank TV though the signal part, TSTff has rank p.   In this case, the eigen- 
decomposition of C can be written as, 

CV = [(Ai+Ov1 (Ap + (T2
z)wp    a2

zvp+1 ^VAT] (IVA) 

where, the A.'s and o\ represent the signal and noise eigenvalues. But in practice, the eigendecomposition has to 
be performed on the sample covariance matrix C as defined in (71.13) and then the noise eigenvalues will not be 
equal but will be absorbed with the signal eigenvalues also. In that case, 

CV=[Aivx ApVp    Ap+iVp+i A;vv;v] (IV.5) 

where, the estimated eigenvalues are ordered as, Ax > A2 > ••• Äjv. The eigenvectors corresponding to the 
p largest eigenvalues are called the 'signal eigenvectors' which constitute the 'signal-subspace'. All the other 
(TV — p) eigenvectors are known as the 'noise eigenvectors'. Note also that the p 'signal eigenvectors' of C span 

the subspace defined by the columns of T and that they are orthogonal to the 'noise subspace' eigenvectors. 

V : THE PROPOSED DFT-BASED MINIMUM-NORM METHOD (D-MNM) 

As a significant departure from the eigen-based approaches discussed in the previous section, this work advocates 
that the signal-subspace information be extracted from the DFT-of-AC matrix which can be accomplished with 
a single matrix multiplication. This will eliminate the need for iterative calculation of eigenvectors which is 
computationally intensive. The central idea behind the DFT-of-AC matrix is analyzed first. 

V.a :    Signal and Noise Subspace Extraction from the DFT-of-AC Matrix 

Let the DFT matrix be denoted as, 

D A   [ei    e2    •••    ejv], 

where, the elements of the k-th DFT-vector e^ is defined as, ejt(/) =   e^kl, for k,l = 0,1, 2, 

frequencies w,-s are all on the DFT bins and if there is no observation noise, then in general, 

ft A Cefc 

(V.l) 

TV-1. If the 

(V.2a) 
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M 
= ~M IZ(x^e*)Xm' using (7.136) 

ro=l 

l   M 

= ^E(a-Tife*)x-' using (7.8) 
m = l 

l   M 

iJZ_,a™ M 
ra — \ 

t?efc 

t?efc 

(V.26) 

(K2c) 

(V.2d) 

If the fc-th DFT vector e^ corresponds to one of the w,- frequencies, 

1    M i    M 

m=zl m = l 

-L X^M       A*     A, 

M t-^m=l \-™-km\ = T 

Cjfel 

ffcp 

(K3) 

where, <7fc;s denote the covariance of the complex amplitudes. Assuming the number of samples M to be large 

and since Akms are independent random variables, ^Akm,AXm A   &ki =   hi&l- Hence, 

Ä-2 + d-fck- (VA) 

Note that the norm of ft is directly proportional to the signal power, &\, i.e., this norm will be large if the signal 
power is significant. On the other hand, if a DFT-vector ej does not correspond to any of the w; frequencies then 
due to orthogonality, t^e*  = 0, Vi. For such cases, 

ft = 0. 

For this ideal case then, the DFT-of-AC has the following decomposition, 

F A CD 

A  [ft   f2 

->  [Aiui 

fjv] 

ApUp    0 01 

(V.b) 

(V.6a) 

(V.66) 

(V.6c) 

where, the A,s and u,s are the lengths and unit vectors of each fz-, respectively. Note that the unit vectors in the 

matrix in (K6c) have been rearranged so that the zero/nonzero components are clustered together. Interestingly, 
this decomposition appears to be very similar to the usual Eigendecomposition of noiseless and ideal C, as given by 
(V.2). For this ideal signal scenario again, if the DFT-of-AC is formed using the theoretical and noisy Covariance 

matrix of (V.3), then the decomposition has the form, 

F = CD 

= TSTHD + a2
zD 

-*•   [(Ai+^)ui     •••     (Ap+0-2)Up     <T>p+i a\ ujv ], 

(V.la) 

(V.lb) 

(V.7c) 
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where the Uj's have been arranged in decreasing order of lengths. Note again that this decomposition is analogous 

to the one in (VA). In this case also, the p largest-norm vectors of the DFT-of-AC matrix contain the signal 
subspace information. 

In practice, the w;s will not be on the DFT bins and the observations may also be noisy and hence, the 

decomposition in (7.6) or (V.7) will not hold. But the DFT-components (f/ts) closer to the signal frequencies will 
tend to have larger norms. Hence, for the general scenario, when the observation data is noisy and the angular 
frequencies w,-s are arbitrarily spaced, the signal/noise subspace decomposition can be formed as : 

F   ->  [Aiui    •••   ApUp    |   Ap+1up+i    •••   AJVUAT] (V.8a) 

A A [Us    |    UJV] (7.86) 

A  [Fs    |    FJV] (V.8c) 

A ft f2 ... fp : fp+1   ... fjv] 

where, the matrix Fs is formed with p number of f,- vectors having larger norms, Aj > A2 > 

norms of the corresponding f8 vectors and the matrices A, U5 and UJV are formed as, 

(7.8d) 

> AN are the 

A A Vs A ui    u2 and,    UJV A Up+l UJV (7.8e) 

It may be observed again that the decomposition in (7.8) is analogous to the eigen-based counterpart in (77.5). 
It may also be noted here that in case of the ideal signal cases of (7.6) and (V.7), an unit vector u, corresponds to 
one of the DFT-vector ej,, but in the general case of (V.8), they are linear combinations of the DFT-components 
close to the signal frequencies. 

V.b :    Incorporation of DFT-Based Signal Subspace in the Minimum-Norm Framework 

The principal idea behind the Minimum-Norm method is to form an appropriate 'noise-subspace' vector d 
which is orthogonal to the 'signal-subspace' defined by F5. Let, 

JV-l 

D(z) A   J2 d*z~k (v-g) 
k = 0 

be an (TV — l)-th order ^-polynomial with p zeros at, z,- = eJa,i, for, i = 1, 
The coefficient vector is denoted as, 

,p, corresponding to the DOAs. 

d A   [d0    di dN. A 
d' 

(7.10) 

where, d0 = 1 and d' contains the unknown coefficients. According to the MNM philosophy [15], if Fs does 
constitute of the signal-subspace, then d must be orthogonal to Fs, i.e., 

Ff d = 0. (7.11) 

d needs to be found by solving this underdetermined set of equations which has infinite number of solutions. 
According to [15, 26], the solution that also minimizes the norm ||d||2, possesses the desirable property that all 
its roots fall inside the unit circle. This 'minimum-norm' solution of d for solving (7.11) can be expressed as : 

1 
(7.12a) 

GÄ(GGff)-1g 
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where, F5 is partitioned as, 
Ff A [g   I   G]. (v.m) 

Once d is estimated, the p roots of D{z) closest to the unit circle are used to find the DOAs. It may be recalled 

that in E-MNM the signal-subspace eigenvectors vj, V2, ..., vp, as defined in (K5) are used to form F5 [15, 

26]. But in case of the proposed approach, no eigendecomposition is necessary. Post-multiplication of C by the 

DFT-matrix D is all that is required to extract the signal subspace in (V.8). 

V.c :    Summary of the Proposed D-MNM Algorithm 

The key steps and some alternative possibilities are summarized in this Section. 

V.c.l : Algorithm Steps 

1.  Form the Covariance Matrix estimate using forward-backward method [15] : 

1 

m=l 

The 'backward' vector is defined as x^ A Jx£,, where, J denotes the permutation matrix with l's at the 
cross-diagonal entries and * denotes the complex-conjugate operation. 

2. Post-multiply C by the DFT matrix D to form the DFT-OF-AC matrix, F A CD. 

3. Form F5 as in (V.8c) using the p unit vectors corresponding to the largest norms. Partition Fs as in (V.12b). 

4. Estimate the d vector using (V.12a) and form the D(z) polynomial using the elements of d. 

5. Find the roots of D(z). Pick the p roots closest to the unit circle to find the desired frequencies/DOAs. 

V.c.2 : Alternate Possibilities 

Steps 2 and 3 : Post-multiplication of the AC-matrix by a DFT-matrix has been used here because the decom- 
positions as described in Section V appear analogous to eigendecomposition. But it is easy show that identical 
results can be obtained if the AC-matrix is pre-multiplied by a DFT matrix, i.e., the DFT-of-AC matrix can also 
be formed alternately as, Fi A DC. In that case, the largest norm row vectors of the DFT-of-AC matrix Fi 

must be used to form F^ defined in (K13). 

Step 4 '■ This step requires inversion of a matrix of dimension (N — 1) x (N — 1). This can be avoided by orthog- 
onalizing the p largest norm vectors in F5. Let, F5 be the new 'signal-subspace' matrix with the orthonormal 
set of vectors which can be written in partitioned form as, 

F°S
H A  [g0    I    G0]. (K14) 

With these partitioned matrices, d can again be found in Step-4 as [15], 

1 

- G?g0/(1 - gf g0) 
(VU5) 

It may be mentioned here that in [15], p orthonormal signal eigenvectors were used to form Fs, whereas here Fs 

is formed by orthogonalizing the p largest norm vectors of the DFT-of-AC matrix. 
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Step 5 : This step requires rooting of the (N — l)-th order polynomial D(z). Instead, the frequencies may also 

be found from the peaks of the following minimum-norm pseudo-spectrum [15, 26, 40] : 

PMNM(en A ^-L^ (V.16) 

VI: PERTURBATION ANALYSIS OF THE D-MNM ALGORITHM 

According to the MNM framework, the angles of arrival #,• are extracted from the p roots of the polynomial 
D(z) that are on or closest to the unit circle. Let the p signal zeros of D(z) on or closest to the unit circle be 
denoted as, Zj  = e3Wi which are found by rooting D(z). 

In practice, the polynomial D(z), defined in (V.9), is formed with the coefficient vector d estimated using 
(V.12). Since d is a function of observations, any error in d would be due to deviations or noise in the observa- 
tions. Error in estimated d would affect the estimated roots, Z{ and that in turn would introduce errors in the 

corresponding Wj's as well as in the 0t's. Hence, in order to analyze the bias and MSE of the AOAs, we need to 

relate these errors all the way back to the error in the MNM coefficient vector d. Hence, we begin by relating the 
AOA errors to signal zero errors which are then related to the coefficient errors. 

VI. 1 : Relationships Between the Errors in the AOA Estimates and the Signal Zeros 

From (II.5) and the definition of D(z) in (V.9) we know, 

Zi = ejWi = e»'2*4""9' {VI.la) 

and, 

Hence, we can write, 

(V/.16) 

d6i ~ 3 x cose,e 

~ Mi 
(VI.2) 

and, 

Similarly for z* 

Azi = j^cose^^^^Aei. (VI.3a) 
Ä 

Az* =   -j^cosfl-e-i^-in^Aflj. (VI.3b) 

Hence, the bias errors in AOAs have the following linear relationship with the corresponding signal root errors, 

E(Mi) =   -j       X       e-^^eiE(AZi). (VIA) 
zwd cos Vi 

where 'E( )' is used to denote the expectation operator. Furthermore, using (VI.3) the MSE of the AOAs can be 
shown to be related to the signal-root MSEs as, 
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Equation (VI.4) and (VI.5) show that the bias and mean squared error in the AOA estimate are linear to those 
in the signal zeros. Next, the bias and MSE of signal zeros are related to the coefficient errors. 

VI.2 : Effect of Coefficient Error on the Bias and Mean-Squared Error of the Zeros 

The effect of errors in the coefficients dk on the zeros of D(z) is well known [11] and is given by (note that, 

do = 1), 

Using (VI.6), the total error in Z{ due to error in all coefficients is given by, 

JV-l 

Azi    «     Y]     -£J-Adk 
tl ddk 

-1 

dzi 
t±ak 

-[izr1^-2 ••• ^r(Ar-2)]Ad' 
fljLiMi (! - z'zi *) 

Ill=l,wi (l-*/2,: 

where, d' is defined in (V.10) and 

Af-i ^T^. .-hvg(tM)Ad' (i//-7«) 

Vfe*"') A V(«0 A        1      [1 e^"   ...  e^-^'f. (KI.76) 

Hence, the bias error of the estimated signal root is given by, 

E(Azi) = v/^     -VH(e^)E(Ad') (VI.8) 

The mean squared error is given by, 

E(\Aztf) = N~1 VH(e^)E(Ad'Ad>H)V(e^) (VI.9a) 
lll=l,l*i     \l~ZlZi     I2 

A S VH (eiw>)E(Ad' AdlH)V(eiWi) (VIM) 

where, 

S A     N_x   N~l (VIM) 

denotes the sensitivity of the parameter set and is a measure of the effect of errors in the parameter vector d 
on the signal zeros. Equations (VI.8) shows that the bias in the signal-zeros is linearly related to the bias in 
the coefficient vector and equation (VI.9) provides the relationship between the MSE of signal roots and the 
coefficient error covariance matrix. The expressions for E(Ad!) and ^(Ad'Ad'^) are derived next. 

VI.3 :  Coefficient Error due to the D-MNM Method 

The analysis in this part would rely on the assumption made at the outset; the observation data consists of 
p complex sinusoids in additive white Gaussian noise zn(m). Rewriting explicitly the observation matrix defined 
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in (11.12), 

X A [xx x2   ...  xjif] 

A 

/    ^(0) *2(0) 
x2{\) 

xM(0)    \ 
xM(l) 

(VI.10a) 

where, 

\xi(N-l)    x2(N-l)    ...    xM(N-l)J 

xm(n) A   Y^Aime^n + zm{n). 
t'=i 

(77.106) 

Note that the phase <j>m(i) in Aim which is defined in (VI.6) is assumed to be uniformly distributed. In addition, 
the theoretical autocorrelation matrix C in (IV.3) can be written explicitly as, 

C A E(XXH) 

(    E(x(0)x*(0)) 
E(x(l)x*(0)) 

E(x(0)x*(l)) 
E(x(l)x*(l)) 

E(x(0)x*(N - 1))     \ 
E(x(l)x*(N - 1)) 

\E(x(N-l)x*(0))    E(x(N-l)x*(l))    ...    E(x(N-l)x*(N-l))J 

(    C(0) C(-l)        C(-2)      ...   C(-(N-1))\ 
C(-(N-2)) C(l) 

C(2) 
C(0) 
C(l) 

C(-l) 
C(0) 

\C(N-1)    C(N-2)    C(N-3)    . 

C(-(N - 3)) 

C(0)       / 

(VI.U) 

where, 

C(m) = ELi   k?|2 + ^2,    ifm = 0; 
ELi   k2|V""m,     ifm^O. 

From Section V.a we know that the D-MNM method uses the following decomposition, 

F A CD 

- [FS : FJV] 

A  [f!  f2    ...   fplfp+l    ...,tN] 

= [Cei Ce2   ...  Cep : Cep+i   ...   CeN] 

= [CDS : CDJV] 

(77.12) 

(VI.13a) 

(71.136) 

(77.13c) 

(77.13d) 

(77.13e) 

where p is the assumed number of signal sources. D5 contains the signal subspace DFT-vectors e,- which cor- 
respond to the largest norm f; vectors. In D-MNM, the vector d is entirely in the noise subspace and must be 
orthogonal to the signal subspace Fs, i.e., repeating from (V.ll) 

Ffd = 0, 

24 

(77.14a) 



or, using (VI.13), 

Using (V.10) and (V.12b), 

and the error expression can be written as, 

Df Cd = 0, (77.146) 

Gd' =   - g (VI.15) 

A(Gd') =   -Ag. (71.16) 

Using chain-rule, 

AGd' + GAd'   =   -Ag. (77.17) 

The pseudo-inverse solution for the coefficient error is, 

Ad' =  - G#(AGd' + Ag) 

=   -G#AFfd (77.18) 

where G# denotes the Moore-Penrose pseudo-inverse of G. Equation (VI.18) shows that the error in the coefficient 
vector depends directly on the error of the signal subspace obtained by using the D-MNM method. The coefficient 
error in (VI. 18) can now be utilized in the expressions for bias and mean squared error of the zeros which were 

derived in (VI.8) and (VI.9), respectively. However, according to (VI.8) and (VI.9), in order to obtain E(Azi) 
and Ti'dAz;!2) we need expressions for E(A') and E(A'A'H), which are derived in the next two sections. 

VI.4 : Bias in the Signal Zeros 

First let us find the mean of the coefficient error, 

E(Ad') =   -G#£(AFf)d 

=   - G#£(Df ACH)d;        using(77.13) 

=   -G#£(DfC)d + G#DfCd; assumingAC = C - C 

=   -G#Df£(C)d       using(77.14) 

ta   — G^D^ Cd        if covariance is unbiased 

= 0; using(VI.14). 

(77.19) 

Substituting (VI.19a) in (VI.8) results in, 

E{Azi)   at   0. (77.20) 

This expression implies that the bias in the estimate obtained by using the D-MNM method can be expected to 
be quite small. This fact was observed in simulations also. 

VI.5 : Mean Squared Error in the Signal Zeros 
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For obtaining an estimate of the mean squared error in the zeros, an expression is needed for E(Ad'Ad'H) 
which appears in (VI.9). Starting with (VI.18), we have, 

E(Ad'Ad'H) 

= G#j5(AFfddifAFs)(Gfl')# 

= G#Df E(ACHddHAC)T>s(GH)* (V/.21) 

where, 

^(AC^dd^AC) 

= E{{CH - CH)AAH(C - C)) 

= E{CHddHC) - ^(C^dd^C) - ^(C^dd^C) + E(CHddHC) 

= E{CHddHC) - Cffdd"C 

and from (11.13), we know, 

E{CHddHC) 

1     M 1      M 

(V7.22) 

M    M 

>=1 

= l^ElL 2*(*xfdd*x,xf) (VI.23) 
»=ij=i 

Since this expression involves fourth moments of the process, its computation would be difficult in general. 

However, for a Gaussian random process all higher-order moments can be expressed in term of first and second 
moments. In particular, if vi, v2, v3, and w4 are complex Gaussian random variables, it is known that [40], 

E{Vlv*2V3vX) = E{yivl)E{vzvX) + Eiv^DEfavl) (1/7.24) 

Applying (VI.24) to (VI.23) leads to the following expression, 

E{CHddHC) 

M   M /*i(l) \ (dy\ 1      Xj(0)      \ 

M*T,52E{ 
«=i i=i \xi(N)J 

(*?(0)...)|   i   |K-..) 

d.N 

= -mJ2d"d*s 

I     E(xi(0)x*i(k)xj(g)x*(0)) 

ijgk 

ijgk 

(x*(0)...x*(N-l))} 

\xj(N-l)/ 

EixiWxMxjigWN-l))     \ 

\E(Xi(N - l)x*(k)Xj(g)x*(0))    ...    E(Xi(N - l)x*(k)xj(g)x*j(N - l))J 

(     E(xi(Q)xUk))E(xj(g)x*j(0))        ...        £7(*,-(0)z?(*))J5te(tf)*;(JV - 1))     \ 

\E(Xi(N - l)x:(k))E(Xj(g)X*(0))    ...   E{Xi{N - l)x\(k))E{Xj{g)x}{N - I))) 

i (    E(xi(0)x*j(0))E(xj(g)x*(k))        ...       E(Xi(0)x*j(N - l))E{Xj(g)x](k))    \ 

+   mY,d"d*9 
\E{xi{N - l)x*(0))E(xj(g)x*i(k))    ...    E(Xi(N - 1)*;(JV - 1))£(^ (<,)<(*))/ 

/     E(zi(0)x](0))        ...        £7(ar,-(0)ar;(JV - 1)) 

M2 ^~" 9 

'jgk 

= C"dd*C + -j^Y.d*d9E^9K{k)) 
ijgk 

(VJ.25) 

\E{xi{N - l)x]{<d))    ...    E(Xi(N - l)xl(N - 1)), 
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where, 

Substituting (VI.25) in (VI.22) results in, 

£(AC"ddffAC) 

M    M    N     N 

ijgk i = l j = l g = l t = l 

^E^fo^c*)) 
/    £(^(0)^(0)) 

«is* 

£(*,•(())*;(#-1))    \ 

XEixiiN-^iO))    ...    E(xt(N - l)x*j(N - 1))) 

(77.26) 

Further, if the noise is white and the complex amplitudes of the signal are uncorrelated, then if i ^ j, 
E(xi(9)x*(k)) = °- In (VI.26), among M2 possible i, j combinations, there are only M terms for which, i = j. 
Retaining only these terms we have, (assuming stationarity, the dependence on i (=j) has been suppressed) 

£(ACwdd"AC) 

N     N 

M 

/    E(x{Q)x*(0)) 

^E(x(N-l)x*(0)) g=lk=l 

= ^EX>w*(sK(*)) c 
g=lk=l 

£(z(0)a:*(J\r - 1)      \ 

S(ar(JV - l)a:*(iV - l))y 

M 
g=lk=l i=l 

in the above, 6gt is the Kronecker delta and hence, 

K)    K "       \c(g-k) =  E?=i l«i|V"^-*),    ifff#*. 

Substituting (VI.27b) in (VI.21), 

E(Ad'Ad'H) = G#D*(^EEdtd;(E|aJ|V^-*) + a*6gk)c)Bs(GH)*. 
g=lk=l t=l 

Using this in the expression of the MSE of signal zeros in (VI.9b), 

i?(|A*,f) = SVV"0G#Df (^EE^EM'^'"*
5
 + <Ä)C)DS(G*)^ 

j=i jfc=i »=i 

Now we are ready to obtain the final expression for the bias and MSE of the DOA estimates. 

VI.6 : Bias in the AOA Estimates 

Using the developments in (VI.19)-(VI.20) into the AOA bias equation (VI.4), 

E(AÖi) = 0. 
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VI.7 : Mean Squared Error in the AOA Estimates 

Using (VI.29) in (VI.5), we finally obtain the MSE expression of AOAs, 

^(|M|2) = S{2^Le-)2VHieJW')G#B" (^EX^tEN2^0^ + ^)c)Ds(G")#V(e-0 
' g=l k=\ i'=l 

(77.31) 
This expression explicitly shows that the mean squared error in the AOAs not only depends on the parameter 

sensitivities but also on the specific structure in the D-MNM method. It should be mentioned here some of 
developments presented here are similar to the work in [25]. However, the results in [25] depends heavily on 

statistical properties of eigenvalues/eigenvectors which are neither applicable not appropriate in the present case. 

Hence, in the development above the moments of the data and covariance have been used directly. Simulation 
studies with similar data sets used in [25] verify close match between the theory and simulation results. 

VII: SIMULATION RESULTS 

In the first two examples, the performance of the proposed D-MNM algorithm is compared with the perfor- 
mance of some of the existing well-known algorithms using Monte-Carlo studies. In Example 3, the theoretically 
derived MSE formulae are verified by comparing theory and simulation studies. The theoretical performance is 
also compared with some of the eigen-based counterparts. 

VH.a :    DO A Estimation 

Simulation 1 : Two Closely-Spaced Targets of Equal Powers [15, 38, 39] 

Planewaves from p = 2 sources with $i = 18° and 02 = 22° incident on N=8 sensors were modeled as in [15, 

16, 18]. The number of snapshots, M=10. Fig. 1 shows the norms of the f, vectors for 20 trials at 20dB SNR. 
The two largest Aj-s always appear to be more significant than all the smaller ones. Figures 2a and 2b show the 
roots of D(z) for 50 independent realizations using D-MNM and E-MNM, respectively. The figures show that 
the roots in both cases are at almost same locations. Table-1 compares E-MNM and D-MNM in terms of the 
bias and RMS values with 200 independent trials at different SNR values. The results clearly indicate that the 
performance of D-MNM is quite close to that of E-MNM, though no Eigendecomposition was required in this 
case. In fact, D-MNM was found to be somewhat more robust (in terms of successful trials) at low SNR ranges. 

Vll.b :    Frequency Estimation 

In this Section, the proposed algorithm is compared with the well-known Tufts-Kumaresan (TK) method [17, 42] 
and MUSIC method [1, 30] via simulations. 

Simulation 2 : Comparison of High-Resolution Performance and Threshold Enhancement 

The simulation data is generated using the formula [42] : 

y(n) = aieJM°-5)"+->'f  + a2e^<°-52> + w(n), for, n = 0,   1,   ...,   M-l (VIIA) 

where, w(n) is complex white Gaussian noise with variance v\. The number of data samples used is, M=25. This 
data set has been widely used in the literature for studying the performance of various methods. For this data 
set, it has been shown in [42] that the TK method performs best when high-order (L x L) covariance matrix with 
L = 18 is used with forward-backward covariance matrix [42]. Five hundred independent noise realizations were 
used to compare the performance of the proposed method with that of TK method and MUSIC. The mean values 
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for three cases at different SNR values are displayed in Fig. 4. The RMSE results are shown in Fig. 5 along with 

CR Bound for the frequency at f\ = 0.52Hz. The bias and RMSE at different SNR values are also tabulated 
in Table 2. Clearly, the proposed method extends the performance threshold closer to the CR bound. Hence the 

performance of the proposed method approaches that of the Maximum-Likelihood method more closely, although 
with considerably less computational complexity. 

VH.b :    Perturbation Analysis of D-MNM 

In this Section, the theoretical formulae derived for MSE and Bias for the DOA estimation using the proposed 
DFT-based algorithm are verified by comparing theoretical and simulation results. 

Simulation 3 : Perturbation Analysis of AOAs with Small Number of Sensors 

The problem scenario is identical to as described in Simulation 1 for AOA estimation. For this case, 

N = 8,M = 100, and the AOAs are 18° and 22°. In these simulations the theoretical formulas for mean- 
squared error, as derived in (66) and (67), are compared with the performance using simulated data. The results 

for various signal-to-noise ratios (SNR) are shown in Fig. 6 which shows the result corresponding to the AOA of 
18° using all of the 200 independent trials. 

Note that data set considered in Simulation 3 were also used in [25] for perturbation analysis of the eigen- 
based MNM and MUSIC. But it appears that in [25], only the results with successful trials were plotted. Fig. 
6 indicates that for this example, the D-MNM method appears to have smaller squared error than E-MNM, 
especially at low SNR. This was found to be the case for all trials. In fact, the success rate was higher for 

D-MNM when compared with E-MNM. Following the trend in the eigen-based cases, Root-MUSIC fared a little 
better (except at low SNR), but it may be noted that in case of Root-MUSIC the polynomial to be rooted 
has twice the order than either D-MNM or E-MNM. Finally, it may be emphasized here that the theoretical 
predictions based on formulas derived in this paper were found to be quite close to those obtained by computer 
simulations. 

VIII:   ANALYSIS, DISCUSSION AND DIRECTIONS ON FURTHER RESEARCH 

The results presented so far are quite intriguing and can may possibly have some important consequences on 
simplifying the present practice of frequency/DOA estimation. The proposed approach of forming signal-subspace 
using DFT without any eigendecomposition also opens up whole new avenues for further research and, at the 
same time, poses some unanswered questions. Furthermore, it may be possible to extend and incorporate similar 

ideas in other closely related problems or to develop more simplified algorithms. Clearly, the major advantage of 
the proposed approach is that all the signal-subspaces are obtained with a single matrix multiplication. This step 
may be performed using FFT which is very efficient for hardware and software implementation. In the following, 
some analysis as well as some possible directions for further research are briefly discussed. 

1. Reduced Computational Complexity and Usefulness in High Sampling-Rate Problems :  The 

major significance of D-MNM is that its high-resolution capability does not rely on any iterative method 
or eigendecomposition which is also computed iteratively. The lower computational complexity of D-MNM 

should be attractive in any general frequency/DOA estimation scenario. But the usefulness of the proposed 
method should be specially significant in those applications where traditional high-resolution methods are yet 
to make much inroads due mainly to extremely high sampling rate requirements. Specifically, in Electronic 
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Warfare (EW) applications, the signals usually operate in the GHz range but real-time, high-resolution 

capability is a necessity [41]. Currently no EW receiver processes signals entirely in digital. The proposed 

DFT-based MNM with its low computational complexity, is expected to provide the desired high-resolution 
capability to future digital EW receivers. 

2. Signal-Subspace Information from the Autocorrelation Matrix Only : The strength of the 
Minimum-Norm framework as a high-resolution method really comes from its ability to form the 'noise- 

subspace' vector d by exploiting the orthogonality property in (V.ll). It appears that as long as Fs has 

some component of the signal-subspace T, the solution of (V.ll) would retain its high-resolution capabil- 

ity. The DFT-of-AC is an appropriate candidate to produce Fs because it is a linear combination of the 
signal-vectors in T. This can be seen by rewriting the DFT-of-AC matrix, 

F = CD 
1    M 

-Y »(x£D) (VIII.l) 

In fact, the AC matrix itself is also a possible candidate for obtaining the 'signal-subspace' Fs, because it 
can be expressed as a linear combination of the signal-vectors in T, 

C = T 
M 1 -H {VIII.2) 

Theoretically, the norm of each vector in ideal C should be equal but with noisy C, the norms of some of 
the vectors may be reduced while for other vectors, the norms may be more than the nominal value. Hence, 
the ideal choice would be to pick the vectors with norms in the middle range. Not surprisingly, when Fs is 

formed in this manner with p vectors of the estimated C, MNM again demonstrated high-resolution capability 
in simulations (not included). This simpler procedure to obtain 'signal-subspace' information needs to be 
studied further. But it must be stated that D-MNM performs better at low SNR because the DFT operation 
accentuates the signal-subspace, as discussed next. 

3. Asymptotic Analysis of the DFT-based Signal Subspace for Arbitrary DOA/Frequency :  For 
ideal noise-free observations if the frequencies are not on the DFT bins, the DFT-of-AC operation can be 
expressed as : 

= CD 

= TST^D 

= TE 

-t?D 

LtfD 

(VI11.3a) 

(VMM) 

(VI11.3c) 

Consider the matrix at right. Each of the t^D vectors are complex valued DFT of a sequence of a complex 
sinusoid. The magnitude of each row vector, t^D has a Sine envelope with a peak occurring at the column 
corresponding to the bin location closest to the frequency w,-. For infinite aperture with N —► oo, i.e., for 
large number of sensors, each row vector peaks at w,- and the other elements of that row approaches zero. 
The same will be the case for each of the other row vectors also. Hence, asymptotically, the DFT-of-AC 
operation again produces p largest norm vectors at the true signal frequencies. The asymptotic analysis 
for the noisy case as defined by (V.7) would also provide similar results.  For finite N, because of the Sine 
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weighting, the largest norm vectors will also have contributions from some other t, vectors in the T. But 

those components also contain signal-subspace information which is orthogonal to d and hence useful for 
obtaining the minimum-norm vector d. 

4. Estimation of the Parameters of Damped Sinusoids in Noise : Many eigen-based methods have been 
successfully utilized in estimating the unknown parameters of damped sinusoids from noisy observations [5, 

14]. It appears that with some simple modifications the proposed DFT-based approach could also be used 

for the same purpose. The advantage would again be that no eigendecomposition but the performance will 

be comparable. 

5. Largest Norms vs. Peaks : In all the simulations presented here, the signal subspaces have been formed 
by selecting the p unit-vectors having largest norms. But the ideal solution may be to pick the unit vectors 
corresponding to the p largest peaks (having smaller norm vectors on both adjacent bins). This may eliminate 

any possibility of picking multiple vectors from the vicinity of strong signals. It should be emphasized though 
that largest norm criteria has worked quite well so far, as demonstrated by a large number of simulations. 
But this aspect certainly needs further analysis. 

6. Zero padding : In classical spectral estimation, Periodogram relies on DFT/FFT, but it is often necessary 
to extend (or, pad) the available data with zeros so that interpolated values between available bins can be 
calculated. Zero-padding is also used to extend data-lengths to powers of two such that the computational 

efficiency of the FFT can be taken advantage of. In the simulation studies, no zero-padding had been 
incorporated so far. It is not quite apparent whether the zero-padding should be done directly to the data 
or to the covariance estimates and this aspect needs further study. It would also be necessary to study the 
possible effects on the signal-subspace produced by the DFT-of-AC operation after zero-padding is introduced. 

7. Windowing : In classical spectral estimation, in order to avoid sudden discontinuities, the observed data is 
often weighted (or tapered at both ends) by non-rectangular window which tends to enhance the 'dynamic 

range' at the cost of 'resolution'. In the simulation results presented here, no windowing has been used. 
But windowing is known to be highly effective in locating weak frequency components which tend to get 
submerged by the sidelobes of strong components. Though it is believed that that orthogonality property 

in (V.ll) is the main contributing factor for the high-resolution capability of D-MNM, it would certainly be 
interesting to study what effects windowing might have on the performance of D-MNM. 

8. Use of DFT-Based Signal-Subspace in other Eigen-Based Methods : Other than the Minimum- 
Norm Method covered in this paper, there is a large body of work where some form of eigendecomposition 
is utilized to estimate DOA/Frequencies [1, 2, 8, 10, 13-15, 19, 22, 23, 30, 32, 36, 42, 43, 44-47, 49]. Among 
the more important results are, MUSIC [30], SVD [15, 42] and ESPRIT [22]. It is quite possible that the 
proposed DFT-based signal-subspace may be incorporated with some of these existing eigendecomposition 
based methods, in order to implement those methods without eigendecomposition. Clearly, the proposed 
approach can be used to implement MUSIC, except that the noise subspace Fjv defined in (V.8c) would have 
to be utilized. Also, the left and right eigenvectors of the SVD of a data matrix are actually the eigenvectors 
of correlation matrices. Hence, it appears that some of the SVD-based approaches may also be modified 

to incorporate DFT-based signal/noise subspaces. Care should be taken about the choice of either the left 
or right signal-spaces, because both may not contain signal information. The case is not so apparent for 
those methods which use generalized eigendecomposition [22, 36, 45]. As part of this paper, some of these 
possibilities will be further investigated. 
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9. DFT-Prony : There has been some recent interest in implementing the Prony's algorithm in the Frequency- 

Domain [29]. Clearly, the signal-vectors in Fs can be treated as multiple time-series to form a (p+1) x (p+1) 
covariance matrix (using forward-backward approach) and then the p-th order Prony's polynomial can be 

estimated. Based on preliminary simulations (not included), this approach appears to be simplest of all 
existing methods with moderately good high-resolution performance. The performance of DFT-Prony is 

much better than that of the standard Prony's method because the DFT-based signal subspace is cleaned-up 

though without any eigendecomposition. These ideas will be further studied as part of this paper. 

10. Two-Dimensional Frequency-Wavenumber Estimation : In some array processing scenarios, both 
the DOAs (related to wavenumbers) and the center frequencies need to be estimated. Many existing 1-D 

eigen-based methods have been extended to 2-D to address this problem. It appears that the DFT-of-AC 

vectors can be formed in both domains and two D(z) polynomials can be be formed to estimate the the 
frequencies and DOAs separately. Incorporation of the DFT-based signal-spaces for 2D frequency estimation 

will be further investigated as part of this paper. 

11. Hardware Implementation : Perhaps the most important and useful practical impact of the proposed 

method would be in the area of hardware implementation for high-resolution Direction-of-Arrival or frequency 
estimation. All the currently available methods with good-enough high-resolution capability, rely on some 
form of iterative optimization or iterative computation of eigenvectors. In contrast, all that the proposed 
approach requires to form the 'signal-subspace' is a single matrix multiplication. Furthermore, the matrix to 
be multiplied is a DFT matrix and it has special structures so that FFT based processing may be utilized to 
further reduce the computational burden. Hence, one of the major goals of the proposed work would be to 

devise appropriate strategies to design, develop and, if possible, fabricate VLSI hardware for high-resolution 

DOA/Frequency estimation. 
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SNR Successful Trials Bias (in degrees) RMS 
(in dB) D-MNM E-MNM D-MNM E-MNM D-MNM E-MNM 

5 59 39 -0.8480 

1.1589 
-0.5539 

0.4329 
1.4311 

1.9174 
1.3623 
1.9322 

10 139 130 -0.3154 
0.8940 

-0.4589 
0.7603 

1.3529 
1.7910 

1.5063 
1.8571 

15 191 189 -0.0714 
0.4623 

-0.1094 
0.3648 

0.9812 
1.3118 

1.0021 
1.3212 

20 199 198 -0.0055 
0.1717 

-0.0252 
0.1170 

0.6777 
0.8440 

0.6822 
0.8017 

25 200 200 4.99e-4 
0.0611 

-0.0067 
0.0481 

0.4129 
0.4820 

0.4302 
0.4826 

30 200 -200 0.0037 
0.0263 

0.0018 
^0.0219 

0.2297 
0.2728 

0.2329 
0.2737 

Table 1 :   Comparison of performance of D-MNM and E- 
MNM. 

SNR Bias (in degrees) RMS 
(in dB) D-MNM E-MNM MUSIC D-MNM E-MNM MUSIC 

0 -0.0349 
0.0352 

-0.1205 
0.1118 

-0.1178 
0.0983 

0.0876 
0.0786 

0.1783 
0.1748 

0.1594 
0.1486 

3 -0.0133 
0.0141 

-0.1029 
0.1027 

-0.0681 
0.0678 

0.0415 
0.0468 

0.1654 
0.1640 

0.1312 
0.1265 

5 -0.0070 
0.0072 

-0.0964 
0.0838 

-0.0343 
0.0392 

0.0232 
0.0342 

0.1476 
0.1378 

0.0946 
0.0991 

7 -0.0031 
0.0039 

-0.0754 
0.0658 

-0.0063 
0.0111 

0.0142 
0.0245 

0.1322 
0.1189 

0.0373 
0.0560 

10 -3.40e-4 
6.54e-4 

-.0.0289 
0.0301 

-5.62e-4 
-1.19e-4 

0.0054 
0.0093 

0.0756 
0.0776 

0.0140 
0.0058 

15 -7.10e-5 
-1.82e-4 

-0.0023 
0.0019 

2.80e-5 
-9.05e-5 

0.0020 
0.0022 

0.0159 
0.0134 

0.0026 
0.0026 

20 -3.40e-6 
-7.76e-5 

-1.04e-5 
6.34e-5 

1.61e-5 
-5.23e-5 

0.0011 
0.0012 

0.0025 
0.0025 

0.0015 
0.0014 

30 8.64e-6 
-1.77e-5 

2.18e-5 
-9.01e-6 

3.35e-6 
-1.51e-5 

3.53e-4 
3.75e-4 

7.87e-4 
7.84e-4 

4.61e-4 
4.50e-4 

Table 2.   Comparison of Bias and RMS values for three methods 
with 500 independent trials. 
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Section   -    2.2    :       MAXIMUM-LIKELIHOOD   ESTIMATION   OF   MULTIPLE   FREQUENCIES   WITH 
CONSTRAINTS TO GUARANTEE UNIT CIRCLE ROOTS 

SUMMARY 

A recently proposed approximate Maximum-Likelihood Estimator (MLE) of multiple exponentials, converts 
the frequency estimation problem into a problem of estimating the coefficients of a z-polynomial with roots at 
the desired frequencies [1, 2]. Theoretically, the roots of the estimated polynomial should fall on the unit circle. 
But MLE, as originally proposed, does not guarantee unit circle roots. This drawback sometimes causes merged 
frequency estimates, especially at low SNR [1, 3]. If all the sufficient conditions for the «-polynomial to have 
unit circle roots are incorporated, the optimization problem becomes too nonlinear and it loses the desirable 
weighted-quadratic structure of MLE. In this paper, the exact constraints are imposed on each of the lst-order 
factors corresponding to individual frequencies for ensuring unit circle roots. The constraints are applied during 
optimization alternately for each frequency. In the absence of any merged frequency estimates, the RMS values 
more closely approach the theoretical Cramer-Rao (CR) bound at low SNR levels. 

I. Introduction 

Estimating the underlying parameters of multiple complex exponential signals in noise remains a vigorously 
researched topic in signal processing [1-13]. For a single sinusoid or when the multiple frequencies are well- 
separated, the Periodogram performs reasonably well. But if the frequencies are closely spaced, which often occurs 
when the data length is limited or the aperture is too small, the Periodogram fails to distinguish the frequencies 
and produces merged frequency estimates. In order to overcome the Periodogram's resolution limitation, many 
high-resolution methods have been developed in the past two decades [1-13]. In contrast to the Periodogram, 
these methods make effective use of some underlying property of the true sinusoidal signal model. 

Among all the existing high-resolution frequency estimation methods, the MLE appears to provide the most 
accurate frequency estimates and has the lowest SNR threshold [1-4]. Other high-resolution methods rely on 
signal or noise subspace information which is extracted from the eigendecomposition of covariance matrix or SVD 
of data matrix [5, 7-11]. On the other hand, the MLE considers the exact model of the exponential signal and 
attempts to maximize the exact likelihood function to estimate the unknowns. For a single sinusoid, the peak of 
the periodogram itself corresponds to the ML estimate, but for multiple exponentials the MLE turns out to be a 
nonlinear optimization problem [1-6, 12, 13]. 

The MLE approaches developed independently in [1] and [2], estimate the frequencies from the roots of a 
«-polynomial. It may be noted here that in literature, these methods are sometimes referred to as KiSS [1, 5, 
6] or IQML [2]. In the polynomial domain, the ML optimization problem turns out to be quasi-linear where a 
weighted-quadratic criterion is minimized iteratively. Though effective to a large extent, MLE is known to possess 
one fundamental drawback : the optimization procedure in [1, 2] does not impose sufficient theoretical constraints 
on the polynomial coefficients for the estimated roots to fall on the unit circle. The primary goal of this work is 
to address this unresolved problem in MLE. 

Two conditions must be satisfied for a general p-th order «-polynomial to have p unit circle roots : conjugate 
symmetry (Cl) and a derivative constraint (C2), the details of which are given later. In MLE, only Cl is 
imposed. The derivative constraint makes the problem highly nonlinear and hence, C2 can not be incorporated 
in the weighted-quadratic framework of MLE. But when p > 1, Cl alone is not sufficient for unit circle roots. 
Furthermore, from the theory of Linear-Phase FIR filters, it is well-known that the roots of a symmetric z- 
polynomial may fall either on the unit circle or they may be in reciprocal pairs falling inside and outside of 
the unit circle. In fact, it was demonstrated in [1] and [3] that, if SNR < lOdB and the frequencies are spaced 
closely, the roots extracted by MLE sometimes appear in reciprocal pairs. In such cases, two frequencies merge 
to produce only a single frequency estimate. The alternate approach proposed in this paper attempts to alleviate 
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this limitation. 

There is one exception to the two conditions stated above : for p — 1, the conjugate symmetry constraint 
(Cl) alone is sufficient for the single root to fall on the unit circle. This is the main idea which will be utilized 
in developing the proposed Constrained-MLE (C-MLE) algorithm. Specifically, Cl will be imposed on each of 
the lst-order factors of the p-th order z—polynomial, such that each individual root falls on the unit circle. This 
process need not be applied to all the frequencies at all SNRs. The constraints are imposed only on those lst-order 
factors which produce merged frequency estimates at convergence of MLE. The factors for which the roots are 
already on the unit circle, are held fixed. The proposed algorithm may be considered to be a polynomial-domain 
counterpart of the 'Alternating Projection' approach [13] where the ML criterion is minimized w.r.t. one frequency 
at a time while the other frequencies are held at the previously estimated values. Our work appears to be the 
first attempt to guarantee unit circle roots on the polynomial coefficients for Maximum-Likelihood frequency 
estimation. The constraints are primarily effective at low SNR levels when there is a higher possibility for MLE 
to produce merged frequency estimates. In simulations, the RMS values of the frequency estimates using C-MLE 
were found to be closer to the theoretical CR bounds than those of the original MLE algorithm. 

The paper is arranged as follows : In Section-II, the ML problem is stated and the original MLE algorithm is 
briefly discussed and the conditions needed for unit circle roots are stated. In Section III, the proposed constrained 
version of MLE is introduced. Simulation results are given in Section-IV to verify the performance of C-MLE. 

II. The Maximum Likelihood Problem and a Brief Overview of MLE 

The observed samples of a complex multiple exponential signal can be represented as 

x(n) A  J2  Cfcei(win + **> + z(n)    n = 0,1,..., N - 1, (1) 
fc=i 

where, w^, cj, and <j>k are the unknown angular frequency, amplitude and phase, respectively, of the kth sinusoid; 
p is the assumed number of sinusoids and z(n) represents i.i.d. N(0,a2) Gaussian noise samples. For this signal 
model, the MLE corresponds to optimization of the following error criterion [1-4] : 

mm A mm 
■,Wp,Oi, 

i|x - Ta|ß (2) 

where, 
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1 

*(0) 
x(l) 

\x(N -1)/ 

1 

A Ta 

1 
a-2 

(3) 

\apl \eJui(N-l)      eJu2(JV-l)      _     eJwp(N-l) J 

a,k A cj;e
J*'1, for k = 1,2,.. .,p, respectively, are the complex amplitudes. The MLE problem stated in (2) is 

a nonlinear optimization problem with respect to the angular frequencies. Instead, MLE forms an alternative 
but equivalent error criterion in the polynomial coefficient domain which has a quasi-linear structure which is 
well-suited for iterative optimization. A brief summary of the MLE criterion is in order. 

Let, B(z) A b0   + b\z~l    +     ...    + bpz~p, be a pth degree z-polynomial with p roots at eJWl, eJW2   ... 

e*Wp, respectively, and b A [&o   &i   • 

[l]-[4] : 
min  E(b) = bffXff(BBÄ')-1Xb     where 

bp]T be the coefficient vector.  The MLE criterion for estimating b is 

(4) 
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X A 

/    x(p)        ••• *(0) 
x(p+l)     ... x(l) 

\x(N-l)    ...   x(N-p-l)/ 

(5) 

The criterion in (4) appears to be quadratic in b, except that the weight matrix itself depends on the unknown 
coefficients. Hence, this criterion is minimized iteratively. At the (k — l)-th iteration 

min bff[Xff(B(*-1)Bff(*"1))-1X]b (6) 

is optimized, where the weight matrix (BBff) is formed using the estimate of b found at the previous iteration. 
At convergence of these iterations, the frequencies are found from the roots of the estimated polynomial B(z). 
Unfortunately, direct optimization of the criterion in (4) does not guarantee that the roots of B(z) will indeed 
fall on the unit circle and it was recognized in [1, 3] that two conditions, must be satisfied to guarantee unit circle 
roots : 

Cl : The coefficients possess conjugate symmetry : 

bk = b*_k,       for, k = 0,1,...,p,     and, (7) 

C2 : For p > 1, the derivative of B(z), i.e., 

*<•> A %& (8) 

must have zeros either inside or on the unit circle. 

The polynomial domain MLE, as originally proposed, imposes the conjugate symmetry constraint only [1, 2]. 
C2 makes the optimization problem highly nonlinear and the weighted-quadratic structure of (4) is lost if C2 is 
incorporated in the algorithm. Hence, no attempt was made in [1-4] to include C2 in the algorithm. But if p > 1, 
Cl is not a sufficient condition for unit circle roots. The same condition may, in fact, lead to roots in reciprocal 
pairs which can and does occur in MLE, especially at low SNR. In such cases, two closely spaced frequencies are 
estimated as a single frequency only [1, 3]. 

Important Observation : For p = 1, the conjugate symmetry alone is a sufficient condition to ensure unit- 
circle root. Hence, we propose to impose Cl sequentially on each lst-order factor of B(z) during optimization of 
(4). In that case, the optimization at each step will be with respect to only a lst-order factor of B(z) and hence, 
there is no need for satisfying C2. 

III. Constrained MLE (C-MLE) 

The p-th order polynomial B(z) can be expressed in factored form as : 

B(z) = ßCp-0(z)ß(0(z)i (9) 

where, B^-*\z) A 6(
0
p-° + &$P",V' + ... + &Jr/Vp+1 and B^\z) A &<° + 6(

1*V1, are (p - 1)- 
th order and lst-orcTer factors, respectively.   If conjugate symmetry is imposecTön the 1st order factor, then, 
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ß(')(z) = 6^ +   6J    z   1. Note that in (9) the coefficients of the polynomial S(z) are formed as the convolution 
of the coefficients of B^p~'\z) and B^'\z). Hence, in matrix-vector notation : 

A B P-% 

Mp_0    0 \ 
b(p-i) biP-i) 

kip-*) /,(p-«) 
>-l         °p-2 

\  0     bfsp) 

W -;JU> )   tB?- jCb,, (10) 

where, Bp_; denotes the matrix-factor with the z'-th 1-st order factor removed and by A 65/ + jb$.   Using 

(10) in (6), each lst-order factor of B(z) is estimated by optimizing, 

j(fc-i), min b!-[C^B?_/J:-1)Xff(B(i-1)Bff(J;-1))-1XB^^C]b1-, 
b; 

for, i = 1,2,...,p. 

This is a weighted-quadratic criterion of the form : 

bfwj^bj        where, 

(11) 

(12a) 

Wj*_71} A CffBf_i
(J:"1)Xff(B(Ä:-1)Bff(*" 'V'XB^^C 

fb{i) 

(126) 

Note that the weight matrix WJ,_7 ' is formed with the estimates found at (k — 1) — th iteration step when the 
unconstrained MLE algorithm is assumed to have converged. The criterion in (11) can be optimized sequentially 
or concurrently for each first order factor. At each iteration, b, is estimated as the eigenvector corresponding 
to the minimum eigenvalue of w£_7 ' £ IR2x2. The advantage of using (12a) instead of (6) is that, since each 

B(l'(z) is a first-order z-polynomial, the conjugate symmetry constraint is sufficient to guarantee the root of 
ß(l)(z) to fall on the unit circle. In practice, the alternate optimization procedure in (11) need not be carried out 
for all the p factors of B(z). It needs to be invoked only in those cases for which unconstrained MLE produces 
merged frequency estimates. The roots which are already on the unit circle need not be optimized further. This 
sequential process guarantees that all the roots of B(z) will indeed fall on the unit circle. 

IV. Simulation Results 

The algorithm described in this paper has been tested with the same simulated data set used in [1] and [2]. The 
following formula was used to generate the data, 

x(n) = aie
j^n + a2ej^n + z(n) (13) 

n = 0,   1,   ...,24 

where, wi = 27r/i,W2 = ^h, /1 and /2 being 0.52 and 0.50, respectively, a\  = 1, tz2 = eJ'*, z(n) is a computer 
generated white zero-mean, complex gaussianly distributed noise sequence with variance   = a2, i.e., ^- is the 
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variance of the real and the imaginary parts of z(n). SNR is defined as, 10 log10(^i-). Two hundred data sets 
with independent noise epochs were used. 

Fig. la and lb show the estimated roots for 200 independent trials of MLE for SNR = 5dB and lOdB, 
respectively. Fig. Id and le show the corresponding results with C-MLE. For the lOdB case, Figures lc and If 
show only the merged cases before after applying the exact constraints. The unit circle roots in Fig. If does show 
wider spread than the corresponding merged frequency estimates in Fig. lc. Fig. 2 compares the performance of 
MLE and C-MLE with the theoretical CR bound. The results verify that C-MLE performs better than original 
MLE at low SNR range. The performance of C-MLE has also been compared with that of the AP method [13] and 
the results are displayed in Fig. 3. Clearly, the proposed method outperforms the AP method for this example, 
especially at low SNR. 
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Section - 2.3 : IMPROVED AR-PARAMETER ESTIMATION FROM NOISY OBSERVATION DATA 

SUMMARY 

Auto-Regressive (AR) modeling is the most widely used approach for model-based spectrum estimation. 
But almost all the existing methods for AR-parameter estimation show severe degradation if the observed signal 
is corrupted with noise. In fact, all the commonly used techniques, such as, Autocorrelation Method (AM), 
Covariance Method (CM), Modified Covariance Method and their variations, give poor Power Spectral Density 
(PSD) estimates when the observations are noisy. In this Section, a data-adaptive pre-filtering approach is 
presented to address this problem. Preliminary results indicate that when only noisy data is available for modeling, 
the proposed technique gives more accurate PSD estimates than the commonly used methods. 

INTRODUCTION 

Auto-regressive (AR) modeling continues to play a very important role in model-based spectral estimation 
[1-4]. A major reason for the wide appeal of Auto-regressive (AR) modeling is its computational simplicity. 
Specifically, the standard AR-methods such as, Covariance method or Autocorrelation method or their variations 
only need to solve a set of linear equations. Furthermore, in estimating ARMA or MA models, AR-parameter 
estimation is a necessary intermediate step [1]. But there remains a fundamental problem with most AR-modeling 
methods and that is with regards to the sensitivity of the AR spectral estimators to observation noise. Noisy 
observation samples are indeed very common in practice, and the performance of the existing estimators deteri- 
orate drastically in such cases. There have been some previous attempts to address this problem. AR-model in 
noise being a special type of ARMA model, this property has been used in [8, 9], but this makes the estimation 
problem highly nonlinear. Another suggested solution has been to model the process as large-order AR model 
so as to reduce the estimation bias, but this may lead to spurious peaks if the chosen model order is too high 
[11]. Other methods suggest noise compensation to remove the bias but this requires prior information about the 
observation noise [10]. 

The main goal of this Section is to utilize certain data-prefiltering ideas which have been found to be highly 
effective in estimating sinusoidal frequencies from noisy data [5, 6] and also for identifying deterministic systems 
from Input-Output data [12] and Impulse Response Data [13]. It is well-known that a sinusoidal process can be 
viewed as a limiting case of a narrowband AR-process. Indeed, the peak locations of AR-spectra are commonly 
used as the estimates of frequencies [1]. But the poor performance of AR-methods with noisy data also causes 
inferior frequency estimates at low SNR. In order to alleviate this problem, a large class of methods based on 
principal-component (PC) analysis, have been developed for reducing the effect of noise in data [3, 7]. But the 
PC-based methods, though highly effective for tone-frequency estimation, can not be used for cleansing noisy 
AR-data. This is because the data and correlation matrices are theoretically full-rank in this case even when 
there is no observation noise at all. A new class of algorithms, referred to as KiSS or IQML, have been developed 
recently for Maximum-Likelihood frequency estimation [5, 6]. The KiSS algorithm essentially prefilters the noisy 
data by iteratively minimizing the projection of the observations onto the noise subspace formed with linear 
predictor type polynomial coefficients. It is shown in this work that this matrix-prefiltering approach also has the 
desired noise-reduction effect on pure-AR-in-noise data. Extensive simulation studies indicate that the proposed 
preflltering produces more accurate AR-spectra than the conventional AR-modeling approaches. 
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FORMULATION OF DATA-ADAPTIVE PREFILTERING 

The proposed approach may be best explained by outlining the initialization step and the noise-subspace 
projection utilized by the KiSS-IQML algorithm [5, 6]. In that algorithm, the frequency estimation problem is 
essentially transformed into an AR-type polynomial estimation problem. Specifically, let, 

B(z) A b0 + blZ~l + + b„z (1) 

be ap"1 degree 2-polynomial with roots at ejwi,  eja>2   ...  ejw', respectively. The coefficient vector, 

b A [to 6i   ■ ■ •  M3 

is estimated by minimization of the following error criterion : 

(2) 

min bffXJf(BB/7)-1Xb     where, 
{»*}f_0 

(3a) 

/tp    ...    t0 

B A 
0\ 

\0 bp ...   t0/ 
I    x{p)        | x(p - 1) 

x(p+l)     I        x(p) 

\x(N-l)    | x(N-2) 

A   (g    |    G). 

X A 

and 

s(0)        \ 
x{\) 

t(N-p-l)J 

(36) 

(3c 

(3d) 

The weighted-quadratic structure in (3a) is utilized for minimizing the criterion iteratively. At the (i + l)-th 
iteration, the weight matrix (BBff) is formed with the estimate of b found at the i-th iteration and the following 
criterion is minimized to obtain the updated estimate : 

min bff[Xif(B('')B/f(0)-1X]b. (4) 

The iterative algorithm in (4) is initialized with, b = [1 0   ...  0]T. Hence, the initial estimator has the following 
form : 

min b^X^Xb 
b 

min  ||Xb||2. 

(5a) 

(56) 

Interestingly, this criterion is exactly identical to the 'Covariance Method' of linear prediction used in AR-modeling 
[4]. If the data contains no observation noise, the minimization in (5) would indeed produce exact frequency 
estimates. Furthermore, the performance of covariance method for modeling pure AR-processes without any 
observation noise is also known to be quite good [4]. But the performance deteriorates drastically with noisy 
observation data. In fact, simulations indicate that even at reasonably high SNR of 30-35 dB, Covariance (or 
Autocorrelation) method may not be able to distinguish closely spaced peaks or frequencies in the underlying 
process. 
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In order to improve on the initial estimate obtained using (5), the criterion in (4) is iteratively minimized in 
KiSS/IQML. But, the original criterion in (3a) also has the following equivalent forms : 

b^X^BB^^Xb = bifXJ!f(BBff)-1BBH(BBff)-1Xb (6a) 

= x/fBJ!f(BBff)-1BBi:f(BBff)-1Bx (66) 

= X
H

PBHPBHX (6C) 

= ||PB*X||? (6d) 
= ||Bff(BBJT)-1Bx||2 (6e) 

= l|WBx||2 (6/) 

= l|WXb||2, (Qg) 

where, PBH A BH(BBff)_1B denotes the 'projection matrix' of B^, 

W A BJf(BBif)-1 (7a) 

is a weighting matrix and 
x A [a:(0) x(l)  ...  x(N-l)]T], (76) 

is the observation vector. 

Equation (6d) shows that, in order to reduce the effect of noise in this AR-type parameter estimates, the 
projection of the data (x) onto the column-space of the BH matrix needs to be minimized. The criterion 
in equation (6g) is similar to the criterion in (5b) for Covariance method, except that in (6g) the projection 
operation essentially prefilters the data matrix X by the weight matrix W which is formed by the coefficients 
estimated at the previous iteration step. The most obvious conclusion from this discussion is that the noise- 
suppression capability of KiSS-IQML is essentially due to this prefiltering of the data-matrix (X) which appears 
in conventional Covariance method for AR modeling. 

As mentioned before, multiple sinusoids can be modeled as a limiting case of narrowband AR-process [1]. The 
analogies noted above appears to lead to the possible hypothesis that similar prefiltering operation may be equally 
effective in reducing noise effects on the AR parameter estimates also, especially for narrowband AR-processes. 
The algorithm outlined next essentially minimizes the projection of the data onto the column-space of B^ in 
order to obtain improved estimates of the AR-parameter vector b. 

STEPS FOR THE PROPOSED PREFILTERING ALGORITHM 

1 :    Obtain the initial estimate of the AR-parameters in b using any of the conventional AR-modeling methods. 

2 :    Form the B^ matrix defined in (3b) using the estimate of b found in the previous iteration. 

3 :    Minimize the criterion (4b) to obtain an updated estimate of b, which has the following form : 

b<i+1) =   |   | (8) 

where, B^ denotes the matrix obtained is Step-2 whereas, g and G are defined in (3d). 

4 :    Go to Step-2 unless ||b(,+1) — bW||2 < <5, where 6 is a small number. 

An important difference between KiSS-IQML algorithm and the proposed method is that in case of KiSS- 
IQML, conjugate-symmetry constraints need to be imposed on the coefficients of the i?(2)-polynomial in an 
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attempt to constrain the roots to lie on the unit circle. This makes the optimization problem even more nonlinear. 
But in the present case no such constraints are necessary and hence, the optimization in (4) is more straight- 
forward. Extensive simulation studies have shown that this algorithm does produce better AR spectrum match 
at lower SNR than any of the standard AR-modeling techniques. 

SIMULATION RESULTS 

The test data-set given in Chapter-7 in [3] was generated for the simulation. Fig. 1. illustrates the per- 
formance of the Covariance method for 50 independent realizations of the observation data at 30dB SNR. The 
solid line in Fig. 2 shows the average of estimated spectra of the 50 realizations and the dashed line shows 
the true spectrum. Figures 3-4 and 5-6 show the corresponding results with Modified Covariance Method and 
Autocorrelation Method, respectively, with identical data sets. The results clearly demonstrate that even at this 
moderately high SNR, none of these commonly used methods were able to distinguish the two spectral peaks 
for most of the noise realizations. Fig. 7 shows the results of the proposed prefiltering algorithm for those 50 
identical realizations at the same SNR. The iterations converged in 6-8 iterations in all cases. Fig. 8. shows the 
average of the 50 realizations with the true spectrum. This improvement was found to be consistent even at lower 
SNR values. Similar improvements have also been observed when the Auto-correlation method and the Modified 
Covariance method were used to generate the initial AR parameter estimates. The plots clearly demonstrate 
that the proposed method was able to match the AR-spectra more closely. With simulated data, the average 
prediction error power for the proposed estimator was also found to be much smaller than the standard methods. 
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SECTION - 2.4 : IMPROVED ARMA-PARAMETER ESTIMATION FROM NOISY OBSERVATION DATA 

SUMMARY 

Existing methods for ARMA modeling assume that the available process is produced by an ARMA system 
driven by a white input process, i.e., the observed process is considered to be pure ARMA. In practice, the 
available data usually have observation noise added to it but the ARMA methods do not address this problem. 
Simulations show that performance of the existing ARMA methods deteriorate when the observation process is 
noisy. In this Section a new ARMA algorithm is given which utilizes a recently developed deterministic rational 
system identification method (OM-IO) [8] that minimizes the modeling or output error norm. The algorithm first 
estimates the input process and then invokes OM-IO using the input-output data. Simulations indicate that the 
proposed method is quite effective even at low SNR observation data. 

INTRODUCTION 

With both poles and zeroes, ARMA models are best capable of effectively representing general spectra with 
possibly sharp peaks as well as deep valleys. Modeling of ARMA processes involves solution of a set of highly 
nonlinear equations. Existing methods divide the problem into several 'equation error' minimization problems 
to estimate the AR and MA parameters in several stages. The estimation problem is further complicated if the 
available data is also corrupted with observation noise. In fact, simulation studies indicate that the performance of 
the existing ARMA modeling methods deteriorate significantly with noisy data. This drawback may be attributed 
to the sensitivity of equation-error minimization based methods to the presence of noise. In this Section, we 
propose to address this problem by incorporating a recently developed optimal algorithm for identification of 
deterministic ARMA systems [8] into the stochastic ARMA modeling problem. Recent results indicate that 
estimators based on minimizing model 'fitting-error' have superior performance when compared to those which 
rely on equation-error minimization [8, 13]. In view of this, unlike existing ARMA methods, the algorithm 
presented in this work minimizes output or modeling errors. The results obtained so far indicate that the proposed 
approach is much more effective than existing methods for ARMA parameter estimation when the available data 
is not purely ARMA but has some observation noise added to it. 

THE ARMA MODEL 

An ARMA(p, q) process can be represented in a linear difference equation form as, 

p i 

x(n) = -^6jfex(n- k) + ^ajtw(n - k) (1) 
h = \ k=0 

where, the corresponding ^-domain transfer function has the following form : 

TT(y\ -        a°+ Ctl2"1 + '''+ üqZ~9 A  Üfl (o\ 
n [Z) ~ 1 + M-1 + b2z-* + ■■■ + bpz~P  = B(z) ■ {l) 

Let, 

a A [ao fli   • • •   aq] and (3a) 

b A [1 6i   ••■6p]T '(36) 

denote the unknown MA and AR parameters, respectively. In vector form, 

x A [x(0) x(l) ■ ■ ■  x(N - 1)]T and (4a) 

u A [«(0) u(l)   •••  u(N-l)}, (46) 
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denote the output data and the driving noise sequences, respectively. 

PREVIOUS METHODS 

Estimation of the Maximum-Likelihood (ML) parameters of an ARMA process is a highly nonlinear problem. 
Akaike's MLE method requires nonlinear optimization which are prone to poor convergence if the initial estimates 
are chosen properly [4]. To overcome the complexities of MLE, many computationally attractive techniques have 
been developed also. Among these, the Modified Yule-Walker equations (MYWE) method estimates the AR 
parameters from the tail-end of Yule-Walker (Y-W) equations, i.e., from, rxx(k), k = q + 1,..., q + p. The output 
process is then filtered by the estimated A(z) filter, which results in an MA process from which the MA parameters 
can be determined by any standard procedure for MA parameter estimation [9]. An extension of this approach, 
known as the Least-Squares MYWE (LSMYWE) [10], uses more of the tail-end of Y-W equations and yields 
better results than MYWE. 

In stochastic ARMA modeling, the driving white noise sequence is completely unknown. Clearly, if it were 
somehow possible to have some estimate of the driving noise u(n), then any input-output system identification 
technique could be used to estimate the ARMA parameters. Two well-known ARMA methods are indeed based 
on this principle, namely, Two-Stage Least-Squares [5] and Three-Stage Least-Squares [7, 12]. The primary steps 
in these methods are to model the output data first as a large order AR process, then a prediction error sequence 
is obtained by passing the data through the inverse filter which is MA. This whitened prediction error sequence 
is used as the estimate of the input white noise sequence u(n). With this estimated input and the observed 
output, the ARMA parameters are then found by minimizing equation errors in two [5] or three stages [7]. The 
three-stage approach has been shown to have lower variance than the two-stage case. But, as will be shown with 
simulations below, even the three-stage algorithm can not perform well when the observation data is noisy, which 
is quite possible in practical situations. 

It may be mentioned here that in [11] a data-adaptive prefiltering method has also been proposed for improved 
modeling of AR-parameters from noisy observation data. As noted in [11], there have been some previous work on 
AR-modeling from noisy data, but the author's are not aware of any such work for modeling ARMA parameters 
from noisy data, which is the problem considered in this work. 

THE PROPOSED IDEA 

Instead of minimizing the equation error criterion as in [5, 7], the proposed algorithm minimizes the modeling 
error or output error criteria. This is also a nonlinear problem, but a recently developed input-output identification 
method optimally decouples the numerator and denominator problems [8] into two separate problems of smaller 
dimensions. The decoupled estimators retain the global optimum of the original criterion. It has been further 
shown in [8] that in the decoupled form, estimation of the numerator a is a purely linear problem whereas the 
estimation of the denominator is a nonlinear problem of reduced dimensionality. But the nonlinear criterion for 
the denominator possesses a convenient weighted-quadratic structure which can be easily exploited to estimate the 
denominator iteratively. Preliminary simulation studies show that the proposed method outperforms the existing 
ARMA modeling approaches when the observed data is corrupted with noise. Brief explanation of the underlying 
theory along with the algorithm steps are in order. Some simulation results included at the end demonstrate the 
superior performance of the proposed method. 

FORMULATION OF THE ESTIMATION PROCEDURE 

Let, 
y(n) = x(n) + v(n), (5) 

be the observed noisy ARMA process, where v(n) denotes the observation noise process. Let, 

y A [y(0) y(l) • • •  y(N- 1)]T (6) 
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denote the noisy output vector. Using covariance method, this observation data is first modeled as a large order 
(=L) AR model to obtain an AR-polynomial BL(z) such that L » p, the true AR-order of the underlying 
ARM A process. The observation sequence y(n) is then filtered through an MA-filter in the form of BL(z) to 
obtain a whitened prediction error sequence u(n). Then using u(n) as the estimate of the input sequence, the 
ARMA modeling problem can be restated as the following output-error minimization problem : 

E wo-^wo}]2- (7) 
»=o 

mm 
a,b B(z 

It has been shown in [8] that the above nonlinear problem can be decoupled into a purely linear problem to 
estimate a and a nonlinear problem for b. Such decoupling techniques have also been found to be very effective 
in Maximum Likelihood estimation of the parameters of multiple exponential models [2, 3]. It may be noted here 
that the estimators in [6, 7] utilize the estimated prediction error sequence u(n). But those estimators do not 
minimize the true model-fitting defined in [7], but are based on minimizing equation error norms. The following 
definitions are necessary to formulate the decoupling of the numerator and denominator optimization problems. 

Let Hi{z) be an inverse filter corresponding to B(z), i.e., 

B(z)Hb(z) = 1. (8) 

By writing this convolution in matrix-form, it can be shown that [8], 

BHj A 

"«+i 0 

0 

0 

0 

h(0) 

hb(q) 

.MAT-1) 

0 

MO) 

hb(N 1). 

0, (9) 

which leads to the conclusion that BT is orthogonal to the matrix Hj. Utilizing this orthogonality relationship, 
the optimal criterion for estimating the denominator can be shown to be [8] : 

min yffUfB(BHU/UfB)-1BffU/y 
b 

=  min bHZH(BffU/UfB)-1Zb 
b 

where, U is a lower-triangular convolution matrix formed with the estimated input sequence w(n), 

«(0) 0 ...      0 
u(l) u(0)        ...      0 

U A 

.ü(N-l)    u(N-2)    ...   u(0). 
The matrix Uj is the inverse of U and is also lower triangular. 

z A U/y and 

Z A Bffz, 

where, the matrix Z has the following Toeplitz structure, 

€1R NxN 

(10) 

(11a) 

(116) 

(lie) 

Z A 

z(q+l) z(q) 
z(q + 2)      z(q + 1) 

z(p) z(jp - 1) 

z(AT-l)    z{N-2) 

A   [g    |    G], 

2(0) 0 
Z(l)      2(0) 

0 
0 

*(0) 

ziN -p-1) 

€ ntJV~?-lxp+1 (lid) 

(lie) 
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where, g is a column vector formed with the leading column of Z. The denominator vector b is estimated 
by minimizing the criterion in (10). The minimization is performed iteratively by forming the weight-matrix 
(BHU/U^B) with the estimate of b obtained at the previous iteration step. At convergence of the iterations, 
the estimated b is used to form the matrix Hj using its inverse sequence as in (8). Then the least-squares solution 
of the numerator a is found as, 

ä A (UH6)#y (12) 

where, # denotes matrix pseudo-inverse. The iterative process is initialized by estimates obtained by minimizing 
equation errors as in [6, 7, 10]. Hence, the further iterations of the proposed method can only improve upon the 
equation-error based estimates because it minimizes the true modeling error criterion defined in (7). 

THE OVERALL ALGORITHM IN BRIEF 

The complete algorithm for the ARMA parameter identification can be summarized as the following four 
primary steps : 

1. Model the observed sequence y by a large order AR model. 

2. Determine the prediction error white noise sequence ü, which is treated as the input sequence for the system. 

3. Knowing ü and y, start the iterative procedure to minimize the error criterion in (10). At each iteration, 
b is estimated either as the eigenvector corresponding to the minimum eigenvalue of Zff (BffU/UjfB)-1Z 
or by setting 6o — 1- In the later case, the estimate of b at the (i + l)-th iteration is obtained using the 
estimates of the previous iteration step as follows, 

b«+i) (13a) 

.(Gffwff(i>w(OG)-1GffW/y(,')W(,')g. 

where, the matrix W is formed with the estimates of b at the previous iteration step as, 

W A Uf(BffU/UfB)-\ (136) 

The iterations are continued till convergence is reached, i.e., no significant change is found in b between 
successive iterations. 

4.    Estimate  a using (12). 
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SIMULATION RESULTS 

The simulations were performed with the test data set (ARMA4) used in Chapter-10 of [1]. The true system 
PSD has two prominent peaks as shown in Fig. 1. The PSD estimates at an SNR of 20dB in the observation 
data y(n) are shown in Fig. 2. The results using MYWE, LSMYWE, Maine-Firoozan and the proposed method 
are shown in Figures 2a through 2d. Clearly the proposed method performs better than the other three. The 
corresponding results with 15dB SNR are shown in Fig. 3a - 3d. The performance of the proposed method 
is maintained even at this level of SNR, though the results with the three existing methods have deteriorated. 
Further simulations at lower SNR levels indicate that the peaky spectral shape is maintained at least up to 12dB. 
The efficacy of the algorithm is obvious. 
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Section - 2.5 : TIME-DOMAIN DETECTION OF ELECTRONIC WARFARE SIGNALS IN NOISE 

SUMMARY 

In the passive mode of operations of EW applications, source signals may not be present within a given 
observation window, or the signals may fill only a part of the estimation window. In either case, any frequency 
estimation algorithm may produce erroneous or noise frequencies. Considering the relatively high computational 
burden of any frequency estimation method, it is desirable to invoke a frequency estimation method only when 
a detection scheme indicates high probability of presence of threat. In this Section, the theory of detection of 
sinusoids from Quantized and Noisy time-domain observation samples have been developed. The theoretical work 
on single/multiple samples is mostly complete. Studies with Quantized data have also been performed and the 
results appear reasonably good. Lab tests for the Envelope Detection and Square-Law cases have been conducted 
at Wright Labs with satisfactory results. 

I. Introduction : 

In Electronic Warfare (EW) environments, microwave receivers play a major role in passive identification and 
localization of unknown targets emitting high-frequency electro-magnetic signals. EW signals cover a relatively 
wide bandwidth, typically in the range of 0.2 to 15 GHz, and existing microwave receivers utilize mostly analog 
signal processing tools and techniques [1-3]. In fact, there are no EW receivers that process microwave radar signals 
entirely in the digital domain. With the emergence of increasingly faster and inexpensive digital computers and 
high-speed A/D converters, it is expected that digital processing of microwave radar signals is expected to be 
practically feasible. 

The primary task of a microwave receiver is to gather data for sorting of signals and identification of the type 
of the radar emitting the received signal. Based on these information, jamming, weapon delivery or other options 
are considered. In order to perform these tasks, the receiver must analyze the received radar pulses and measure or 
estimate the following six parameters : Angle-of-Arrival (AOA), Radio Frequency (RF), Time of Arrival (TOA), 
Pulse Amplitude (PA), Pulse Width (PW) and Polarization (P). But in order to reduce computational burden, the 
estimation of these parameters should be undertaken only when it is determined that there is a high probability 
of the presence of a threat signal. 

In this part of the project, the detection problem has been considered in the time-domain for single and 
multiple samples. Detection thresholds and Probability of Detection based on Neyman-Pearson Criterion have 
been derived. Derivations are given for calculating the Thresholds and Probability of Detection for both the 
'Square-Law' and 'Envelope' detectors. 

II. Time-Domain Detection : 

Almost all existing AOA/RF estimation algorithms assume that the signal is already present in the observed 
data. But in the passive mode of operations of EW applications, source signals may not be present at all within 
the observation window, or the signals may fill only a part of the estimation window. In either case, any frequency 
estimation algorithm would essentially produce erroneous or noise frequencies because the observed signal would 
not satisfy the model assumed by the estimation algorithm. Considering the relatively high computational burden, 
any estimation method should be invoked only when a detection scheme indicates high probability of presence of 
threat. 

Since EW receivers do not have any prior knowledge about the frequency/amplitude/phase of the received 
signals, conventional matched filters can not be used in this case. An obvious solution would be to perform the 
detection in the frequency-domain, i.e., the presence of targets can be determined by thresholding of FFT-peaks. 
The frequency-domain approaches are robust but have certain disadvantages in that a decision can be made only 
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after a block of data has been collected. Furthermore, a lot of computational power may be wasted if FFT is taken 
continuously, even when no target is present. Instead, we plan to incorporate a time-domain detection scheme 
that can detect targets in real-time using a single observation or a small number of samples. Once a preliminary 
decision is taken, FFT or more sophisticated frequency/AOA estimation algorithm can be invoked, if desired. 

II. 1 : Signal and Noise Model 

Microwave radars signals can be modeled as, 

x(n) = Acos(u>ck + 0) + n(k) (la) 

= j4cos(wcfc)cos(? — Asin(wck)smO + nj(k)cos(uck) + nQ(k)sin(wck) (16) 

where, n(k) denotes narrowband noise samples. To perform the time-domain detection, the received real data 
is first converted into a complex analytic signal. This is achieved by passing the real signal through a Hilbert 
Transformer to form the in-phase (I) and quadrature (Q) components of the complex analytic signal. When no 
signal is present, the I and Q components may be represented as, 

Xi{k) = m(k) (2a) 

XQ(k) = nQ(k). (26) 

On the other hand, in the presence of signal, the corresponding components are given as : 

Xi(k) = AcosO + m(k) (3a) 

XQ(k) = Asin0 + nQ(k). (36) 

Since the amplitude, frequency and the phase of the received signal are unknown, the detection criterion has 
to rely on thresholding of the amplitude (PA) of the analytic signal. The frequency and phase can be ignored 
for detecting only the presence of a target signal. The amplitude threshold can not be based on minimizing the 
total probability of error because the exact amplitude of the signal is unknown at the receiver. Furthermore, the 
probability of False Alarm (PFA) must also be kept very low (10-6 or smaller). Hence, the best detection scheme 
would be to calculate the threshold by setting the PFA to a constant. The thresholds for Square-Law detector 
have been derived next for single and multiple samples within a pulse. 

II.2 : Square Law Detector 

The noise is assumed to be narrowband and Gaussianly distributed with zero-mean and variance = a2. 
Hence, for the no-signal case of (2) the I/Q noise samples are distributed as : 

Xj(k) = N(0,<r2) (4a) 

XQ(k) = N(0,a2). (46) 

In the following derivation, the time-variable k will be suppressed until the multiple samples case is considered. 

II.2.a :  Single Sample Case 

Assuming independent noise samples, when no signal is present, the joint probability density function (PDF) 
of the I/Q channel outputs are given by : 

f(X!,XQ) = 2^r<r^(r? + *«>■ (5) 

Let, 

Xj = Äcosa (6a) 

XQ = Rsina. (66) 
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Using the Jacobian of this transformation, the joint PDF for this polar form can be shown to be : 

f(r,a) = 2^2e~^u(r)- (7) 

From this the marginal for the Envelope (R) is given by, 

f2w r     _ r2 

fü(r) =    /     f(r,a)da = —-^e   ^u(r), (8) 
Jo *•& 

which is known as the Rayleigh PDF. 

II.2.a.l : The PDF and Characteristic Function with No Signal 

A square-law detector forms the following quantity, 

Z A X] + X2
Q = R2 (9) 

which needs  to be  compared to a threshold to decide  the presence/absence  of a radar target.     Since, 
JH = 2R = 2y/Z, the PDF of the Square-Law output when no signal (denoted as, s) is given as : 

Mzls) = ~%ß~ = 2^e  ^U(Z)' (10) 

which is the Exponential PDF. The Characteristic Function (CF) is defined as the Fourier Transform of the 
Density function : 

C|(W) A F{fz{z\s)] 
I /-00 

= —=■ /     e'th e-juzdz 
2C2 7_oo 

-       1 
~    1   +   J2UHT2 (U) 

II.2.a.2 : The PDF and Characteristic Function in Presence of Signal 

When target is present, i.e., in case of (3), the I/Q samples are distributed as : 

Xi(k) = N(Acos0,a2) (12a) 

XQ(k) = N(Acos6,a2). (126) 

In this case, the joint probability density function (PDF) is given by : 

f(xItxQ) = ^e~^[(X' ~ AC0S9)2 + (XQ " Asin9)2]. (13) 

Once again, using the Jacobian of the transformation, the polar-form joint PDF can be shown to be : 

f(r,a\s) = TT^e-^t'-2 + * ~ 2^cos(« " e\(r). (14) 
2itcr* 

Integrating over a, the marginal PDF of the Envelope is given by, 

/•2ir 

fii(r\s) =    /     /(r, a\s)da (15a) 
Jo 

&<A° + '') f2' e-&<**° - eW, (156) 
Jo 

 n&        2,r* 
2TT(T" 

'Ar 
_e   5^      +     >h[ — ) (15c) 
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where, Io(-) denotes Bessel Function of the zero-th kind. The PDF in (15c) is known as the Rician. 

Similar to the no-signal case in (9)-(10), the PDF of the Square-Law output Z with signal-plus-noise is given 
as : 

fz(z]s) = ~UT = 2^e ^r^Io{-^-)- (16) 

In this case, the Characteristic Function can be found as follows : 

CZ(UJ) A T\Jz(z\8)\ 

la1 jy^'-i^y^        <i7) 

The following Fourier Transform pair can be found in [CF, page-79, pair 655.1] : 

e-p3l0 

*(#) 

1 1 
e»(» + <•). (18) 

w + p 

Using (18) and with appropriate substitutions, Cz(u) is given by : 

CM") =  ,   ,   \    ae"' +"»•"* (19) 1 + j2u)<rz 

II.2.a.3 : The Neyman-Pearson Criterion with a Single Sample   : 

For this one-dimensional case, the decision that the signal is present is taken if the likelihood-ratio [17] : 

. _ fz(z\s) 
fz(z\s) 

> k(PFA) (20) 

where k is a constant that depends on the probability of False-Alarm PFA ■ From this relationship it may appear 
that in order to find the decision threshold, one would need to know or estimate the signal. But one of the most 
attractive consequence of Neyman-Pearson criterion is that for a given predetermined PFA > the threshold can be 
set by integrating f(z\s) over the region where the signal is present [11, 17]. 

II.2.a.4 : Probability of False Alarm 

If the threshold is denoted as 7, the false-alarm probability can be calculated as, 

/•OO 

PFA =   /    fz(z\5)dz 

1    f°°  _ . 
= r-j- /     e  i^rfz from (10), 

n 

(21) 

II.2.a.5 : Detection Threshold 

Taking natural logarithm of both sides of (21), the detection threshold is given as, 

7 =   -2<72lnP>A. (22) 

II.2.a.6 : Probability of Detection 
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If the square-law output z of is greater than 7 from (22), then the decision is taken that source target is 
present. Hence the probability of detection can be calculated from : 

^ 00 

Pb =   /    fz(z\s)dz 

= 1 -    /   fz(z\s)dz 

By letting, v2 =   gfy and with appropriate substitutions, 

Pl
D = I - e~^ J ve~v Ioh^J^vJdv. (24) 

But this integral possesses the form of an Incomplete Toronto Function [13, pp-348] which is defined as follows : 

TB(m,n,r) A2rn-m+1e-r2       tm~ne"'2In(2rt)dt (25) 
— Jo 

Hence Pp can be written in a more compact form as : 

p- = 1-r^(1'°'V/S)- ^ 
II.2.b : Multiple Samples Case 

The detector performance can be expected to improve if the decisions can be based on multiple observations 
within a pulse. The question would then be how to combine the multiple samples in order to come up with an 
inference. For the Envelope Detection case, Tsui and Sharpin have recently derived an M-out-of-iV scheme where 
the presence of target is decided if at least M samples out of a total of N exceed the detection threshold [12]. 
In this work we take a different approach where decisions are taken based on the sum of N squared samples. 
This approach is more akin to traditional CW detection schemes where integration over N pulses is performed 
for making a decision [13]. 

Let Y be the random variable formed with the sum of N independent squared samples, i.e., 
N 

Y A  £Z(*), (27) 

where, the PDF and CF of Z(k) were derived in II.2.a. 

II.2.b.l : The PDF and Characteristic Function of Y with No Signal 

When no signal is present, the PDF of Y which is formed as the sum of N independent samples, is given by 
the following convolution : 

fY(y\s) Afz(zi\t)  *  fz{zi\s)  *  ...  *  fz(zN\s) (28) 

where, each of the Z(fc)'s has identical distribution. Direct convolution of N PDFs appears complicated, but it 
is well-known that convolution in PDF-domain implies multiplication in the CF-domain. Consequently, the CF 
of Y is given by, 

N 

(1 + j2wa2)N 
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Using the inverse Fourier Transform pair-431 [Campbell and Foster, pp-44], the PDF of Y is, 

/y(2/l?) = {2^r{N-i)\u{y) (30) 

II.2.b.2 : The PDF and Characteristic Function of V in Presence of Signal 

Using arguments similar to those in the previous subsection, when signal is present, the CF of Y is given by, 

cf(w) = f[c*z(u,) = [c^)f 
k = l 

1 

-(i + W"'^ <31> 
Once again, using the inverse Fourier Transform pair-650.0 [Campbell and Foster, pp-77], the PDF of Y is, 

II.2.D.3 : The Neyman-Pearson Criterion with Multiple Samples   : 

For this N-dimensional case, the decision that the signal is present is taken if the likelihood-ratio [17] : 

ty = TTT^ > *(p™)- (33) fY{y\s) 

For a given predetermined PFA, the threshold can be set by integrating f(y\s) over the region where the signal 
is present [11, 17]. 

II.2.b.4 : Probability of False Alarm 

For 7 denoting the threshold, the false-alarm probability is, 

rOO 

PFA =   /    fY(y\s)dy 

2_ 

1     f°° e-i^j/^-1 

2^X     (N - 1)!  dy (34a) 

1-7(^iV-1' (346) 

where, /(•) denotes Incomplete Gamma Function which is defined as, 

/(«,*) A   / -;;—dv- (35) 
—   Jo <■■ 

II.2.b.5 : Detection Threshold 

For a given PFA, the threshold j can be determined numerically with a computer or using available 
plots/tables [13]. 
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II.2.b.6 : Probability of Detection 

If the sum-of-squares y is greater than the threshold 7 determined from (35), then the decision is taken that 
source target is present. Hence the probability of detection can be calculated from : 

rOO 

PD   =   /     fY(y\s)dy 

= 1 -   /   fv{y\s)dy 
Jo 

e      30-2 

= 1 - -ö*-{M)       I   42       *  *lN-i\-j-)dy (36) 2<r2    V^^V 

By letting, v2 = -^ and with appropriate substitutions 

PS = = 1 - e 2* 2^-W)  y„   v e lNA2v^vr-        (37) 

This integral also possesses the form of an Incomplete Toronto Function defined in (25). Hence Pp can be written 
in a more compact form as : 

PB = l-TjS(M-l,lf-l,J™). (38) 

II.3 : Envelope Detector 

The PDF of the envelope (R) for a single sample was found in (8).  Hence, for a given PFA, the detection 
threshold is, 

7 = y/-2a*lnPFA. (39) 

The calculation of threshold with N observation samples can be shown to be [12], 

7 - TJN(2-^)  + Nyjl    where, (40a) 

T is found approximately from, 
PFA = 0.5(1 - 4>-\T)) (406) 

and (/>(•) denotes the error function. More details for the Envelope Detector case can be found in [12]. 

It may be noted that unlike the square law and envelope detection threshold calculations for conventional 
radars [13], the discretized schemes presented here do not use matched filtered output but use the sampled data 
directly. 
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SECTION - 2.6 : PIPELINED-ADAPTIVE TRACKING OF MULTIPLE SINUSOIDAL FREQUENCIES 

SUMMARY 

New Pipelined-Adaptive algorithms are proposed for tracking multiple Frequencies or Angles-of-Arrival 
(AOA) of moving targets. Pipelining of adaptive filters pose a critical challenge because of the timing mismatch 
arising from the feedback signals. In this paper, some relaxation techniques [9] will be utilized to pipeline adap- 
tive algorithms for high-speed tracking of frequency/AOAs. Two adaptive tracking algorithms have been mapped 

into pipelined forms, namely Least-Mean Squares (LMS) [3] and Recursive Least-Squares (RLS). Preliminary 
simulation studies with multiple sources indicate encouraging results. 

I. Introduction : Pipelined data-adaptive algorithms are presented for passive high-speed tracking of multiple 

targets. In non-stationary environment or when target locations change with time, block-mode processing of 

observation data is inappropriate while adaptive algorithms are more preferable. Various adaptive algorithms 

addressing this problem exist [3,5] but the throughput rate of these algorithms are limited by usually long critical 

paths of the adaptive filters. Critical paths can be reduced by pipelining which is usually accomplished by 
introducing appropriate latches at intermediate stages to divide the critical path into multiple disjoint sections. 
Pipelining allows higher sampling rate and throughput essential in many radar applications such as in digital 
microwave receivers [11]. However, pipelining of adaptive filters pose additional challenge due to timing mismatch 
produced by feedback signals [9]. Recently, some relaxation techniques have been found to be effective in pipelining 
certain adaptive algorithms for coding and communication applications [9]. In this work, we study the effectiveness 
of relaxations for pipelining adaptive tracking algorithms. 

It may be noted that various adaptive algorithms for tracking multiple targets do exist, including LMS [3], 

gradient adaptive lattice (GAL) [3], least squares lattice (LSL) [3], Recursive Least Squares (RLS) and QR-based 
adaptive tracking algorithms [5]. However, to the best of our knowledge, none of these adaptive frequency tracking 
algorithms have been implemented or studied in pipelined forms. Here we present the results of relaxation-based 

pipelining on LMS and RLS based tracking algorithms. Research on pipelining of the other tracking algorithms is 
being conducted and will be reported later. It may be emphasized here that pipelining will not only be beneficial 
for speeding up adaptive tracking, recent studies indicate that pipelining can be also effective for reduction of 
both power consumption [1] and chip-area [8] using appropriate folding techniques. 

II. Look-Ahead Pipelining (LAP)   : Consider the first order recursive equation given by, 

y(n + 1) = ay(n) + x(n). (1) 

The corresponding transfer function is given by, 

1 — az  l 

By applying an M-step look-ahead using back-substitution, 

M-l 

y(n) = aMy{n-M)+ ]T a*'a:(n - i - 1). (2) 
! = 0 

It can be easily shown that the transfer function corresponding to both (1) and (2) are identical. Note that y(n) 

no longer depends on the previous output sample y(n - 1) but on an output that is M samples back in time, i.e., 

y(n — M). Hence, the immediate dependence problem has been removed [4, 6], i.e., the signals can be sampled 
more often or there is more time for computation. This implies that the throughput of the logic unit is increased 
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by a factor of M leading to high-speed implementation. This technique is referred to as time-domain [6, 10] 
or Clustered look-ahead pipelining [7] Note also that speed-up in throughput is achieved at the cost of higher 
hardware complexity due to the overhead term in (2). 

III. Relaxation Techniques : The above LAP scheme maintains exact equivalence in the transfer function. 

However, the second term in (2) is an overhead term and from the standpoint of hardware, exact computation of 
this overhead term may be impractical, particularly for real-time adaptive implementations. It has been shown in 

[9] for a variety of coding and communication related applications, that these overhead terms can be approximated 

under certain circumstances. 

111.1. Sum Relaxation : In (2), if a & 1, and if x(n) remains approximately constant over M clock cycles, then 
we can replace the overhead term in y(n + M) by [9], 

y(n + M) = aMy(n) + Mx(n) (3) 

111.2. Product Relaxation : When a is time-varying (represented more appropriately by a(n)), but its magnitude 
is close to unity, then a(n) can be written as (1 — a'(n)) where a'(n) is close to zero. The equation for y(n + M) 

can be approximated as [9], 

M-\ 

y(n + M) = (1 - Ma'(n))y(n) + ^ a'(n)x(7i + M - 1 - i). (4) 
»=o 

IV. Adaptive Frequency Tracking using Pipelined LMS Adaptive Filters : Consider the un-pipelined 
LMS algorithm which is referred to as the 'serial' LMS (SLMS) algorithm 

£„•(») = (1 - aLMS)ES(» - 1) + "LMS»2(") TO 

K-) = -W TO pEe
0{n) 

W(n) = W(n - 1) + /i(n)e(n)U(n) (7) 

e(n) = d{n) - WT(n - l)U(n) (8) 

where, 0 < C*LMS "^ ^ ^las t>een used, p is the order of the transversal filter and El(n) is the power of the signal 
samples within the tracking window [3]. By applying M-step look-ahead to equations (5) and (7), we have 

El{n) = {l-aLUS)MEl{n-M) 
Af-l 

«LMS 5Z C1 - "LMS)iu2(n - J')(9) 
•=o 

M-l 

W(n) = W(n - M) + fi(n) ^ e(n - t)U(n - i). (10) 
t = 0 

This introduces M latches in the recursive loops which may be redistributed to pipeline the feedback multiply-add 
operation by M levels. By substituting the equation (10) into equation (8) we obtain the error equation 

T 

e(n) = d(n) U(n) - WT(n-M-l)U(n). (11) 
M-\ 

fi(n) 2_, e(n — i — l)U(n — i — 1) 
»=o 

Clearly, the number of overhead terms after applying look-ahead is rather high. By applying the sum relaxation 
to equation (11) and replacing W(n — M — 1) by W(n — M) we can approximate equation (11) as, 

e(n) = d(n) - WT(n - M)U(n). (12) 
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The sum relaxation is applied assuming that /x(n) is relatively small and hence the second term in equation (11) 
does not have a dominating effect on the error calculation. We also approximate equation (9) to 

Ee
0(n) = (l-aLMS) M 

M-l 

(13) K{n -M) + aLMS J2 «2(" - 0 
»=o 

Equations (6), (10), (12) and (13) constitute the relaxed look-ahead pipelined LMS algorithm (PLMS). It may 

be noted here that the PLMS version given in [9] does not make use of or pipeline this adaptive error calculation 
given in (13) which has been shown to be convenient in adaptive tracking [3]. 

Note that the hardware complexity after relaxed look-ahead pipelining has increased by (N + 1)(M — 1) adders 

because of the overhead terms in (9) and (10). The architectures of the SLMS and PLMS filters are as shown 
Fig. la and Fig. lb, respectively. By comparing the critical paths of the two architectures we see that by proper 
distribution of the extra delays introduced by pipelining, the pipelined architecture can be made to operate 
approximately M times faster. 

V. Adaptive Frequency Tracking using Pipelined Recursive Least-Squares Algorithm : The 'serial' 

recursive least-squares (SRLS) algorithm is described by [2,9] : 

{n>      1 + A-1uT(n)P(n - l)u(n) 

a(n) = d(n) - WT(n - l)u(n); 

W(n) = W(n - 1) + k(n)a(n); 

P(n) = A"1 [P(n - 1) - k(n)uT(n)P(n - 1)] ; 

where, uT(n) = [u(n), u(n — 1), • • •, u(n — N + 1)] is the input vector, WT(n) = [wi(n), • • •, WN(TI)] is the vector 
of weights, d(n) is the desired signal, k(n) is the Kaiman filter gain, a(n) is the error and P(n) = <j>~l(n), <f>(n) 

being the deterministic autocorrelation matrix of the input signal. <f>(n) A Y11=o = An_tu(i)uT(i). This RLS 
algorithm solves for W(n) in the following normal equations, 

<j>(n)W(n) = 0(n) 

where, the cross-correlation vector 9{n) A   Y^l=o A"_'d(j)u(i). 6(n) and </>(n) can be computed recursively as, 

6(n) = \6(n - 1) + d(n)u(n); 

4>{n) = \<t>(n - 1) + u(n)uT(n) 

Relaxed look-ahead pipelining is applied to the above two recursive equations to obtain 

6(n) = \9(n - M) + LAd(n)u(n); 

(/>(n) = X(f>(n — M) + LAU.(n)uT(n); 

where, LA is the look-ahead factor. The sum and product relaxations were used to obtain the pipelined equations. 
Using these equations to solve for W(n), the pipelined RLS (PRLS) equations can be re-derived [9] and are given 
as, 

A-!p(n-M)u(n) 
k(n) — 

1 + A-1uT(n)P(n-M)u(n) 

a(n) = d(n) - WT(n - M)u(n) 

W(n) = W(n - M) + k(n)a(n) 

P(n) = A-1 [P(n - M) - k(n)uT(n)P(n - M)] 
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fl The architecture for both SRLS and PRLS are given in Fig. 2a and Fig. 2b, respectively. We can see that the 

hardware complexity is almost the same as that of the serial algorithm except for an additional IM latches. One 

set of M latches corresponds to that required to pipeline the W-loop and the other to pipeline the P-loop. The 

M latches can be redistributed within the architecture so as to maximize throughput. Furthermore, by employing 

the folding transformation [8], the hardware of the pipelined algorithm can be further reduced. 

VI. Simulation Results : Several simulations have been conducted to verify the performance of the pipelined 

adaptive algorithm in tracking time varying frequencies at various noise levels. 

Simulation 1 : The data set consists of 2 real sinusoids of 0.4375 Hz and 0.1250 Hz which undergo a step change 

to 0.3750 Hz and 0.0625 Hz respectively. The signals are at signal to noise ratios (SNRs) of 20 dB and 15 dB 

respectively. Fig. 3a and 3b show the tracking characteristics of the SLMS (when M = 1) and PLMS (with M 

= 3), respectively, keeping the new parameter at a = 0.04. Fig. 4a and 4b show the corresponding results using 

SRLS (with M = 1) and PRLS (with M = 3), respectively, with A = 0.95. Clearly, in both cases convergence for 

the target with higher SNR is quicker than the low SNR target. Furthermore, there is little effect on convergence 

time due to relaxations used in pipelining especially in the case of the PLMS. In case of PRLS, there appears to 

be some jitter when trying to keep up with the change for the lower SNR target. 

Simulation 2 : The effectiveness of PLMS and PRLS in tracking time-varying frequencies has also been 
tested by letting the algorithm track two sinusoidal FM signals (/ci = 0.3750#z, /C2 = 0.1250i/z and 
A/i = A/2 = 0.0625i/z), where fe and A/ represent center frequency and peak frequency deviation of an 

FM signal, respectively. Both signals are at 20 dB. The simulations are shown in Fig. 5a and 5b for the SLMS 

case (M = 1) and the PLMS case (M = 3) respectively with a = 0.15. Fig. 6a and 6b show the simulation 
results for the SRLS (M =1) and PRLS (M=3) cases respectively with A = 0.7. Again the PLMS and the PRLS 

show minimal convergence degradation. 
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CHAPTER 3 

SYSTEM IDENTIFICATION AND HARWARE IMPLEMENTATION PROBLEMS 

Introduction 

The rational System Identification theory is closely related to the receiver design problem. In particular, 

Angle-of-Arrival (AOA) and frequency estimation are two of the most important integral parts of most radar 
receivers but these two problems can be addressed as special cases of rational system identification problems. 

Furthermore, digital EW receivers would require many digital filters for various purposes such as, anti-aliasing, 

image suppression, IF and etc.. Synthesis of digital IIR filters from any arbitrary frequency domain specifications 
is also one of the important problems addressed by the proposed system identification framework. Identification 

of unknown discrete-time linear systems is a fundamental problem in signal processing. Among many available 
parametric models, pole-zero or rational transfer function model is one of the most effective and practical rep- 

resentations. Optimal estimation of rational model parameters will be the focus of this part of the report. The 
system identification and signal analysis problems considered here are fundamental in nature and the results are 
expected to have impact and usefulness in a wide range of applications including EW receiver design. 

Applications of System Identification abound in Communication systems, Automatic Control systems, 
Aerospace and Mechanical Systems, Econometrics and many other fields. Digital filter design from frequency 
and/or time-domain information has extensive applications in speech or image processing, communication, radar 
or sonar signal processing, bio-medical signal processing, Digital Instrumentation and Control and in various 
other fields. Depending on the application, the design specifications of an unknown system may be available 
or prescribed in the time-domain (T-D) as, (i) Impulse Response (IR) or (ii) Input-Output (10) data, and in 

the frequency-domain (F-D) as (iii) Frequency Response (FR) data. The standard synthesis or identification 
problem is to estimate the numerator and denominator polynomial coefficients that match the prescribed specs 
in the least-squares (LS) sense. It is well-known that these LS problems are highly non-linear. Some existing 
approaches minimize 'equation errors' instead of the true fitting errors and others modify or linearize the true 
model-fitting criteria for iterative estimation of the numerator and denominators simultaneously. 

The main goal in this part of the work is to exploit certain powerful theoretical results in Numerical Analysis 
to theoretically decouple the multidimensional nonlinear criteria, into two distinct problems : (1) a purely linear 

problem for estimating the numerator and (2) a non-linear problem for estimating the denominator. The nonlinear 
part is then reparameterized by invoking results on projection operators. In this form, the denominator criterion 
possesses a weighted matrix structure which is convenient for iterative optimization. But more importantly, 
once the optimal denominator is known, the optimal numerator is found with only a single step of linear LS 
estimation. Removal of the numerator estimation from the iterative process reduces computational complexity 
when compared with existing simultaneous estimators in. 

The theoretical results as well as the algorithmic framework we propose here encompass a comprehensive 
class of system identification problems in time and frequency domains. This important underlying common theme 
appears to have remained unrecognized and un-utilized. In fact, one of our goal is to establish the analogies and 
equivalences between the time-domain and frequency-domain optimization approaches which seem to have evolved 

independently. Our hope is that a thorough study and proper understanding of these equivalences might enable 
us to apply and exchange useful ideas from one domain to the other. It may also lead to combined optimization 
in the frequency and time domains by matching the desired characteristics in both domains simultaneously. 

The proposed unified framework is expected to provide intuitive and useful theoretical insights into various 
time-domain and frequency-domain identification and synthesis problems. For example, the 1-D SISO algorithms 
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can be extended to multi-dimensional (m-D) and multi-input/multi-output (MIMO) problems in a straight- 
forward manner. 

Look-ahead pipelining has been found to be very effective for attaining high sampling rate and high compu- 

tation speed in low-cost VLSI implementation of recursive digital filters. The well-known Scattered Look-ahead 

implementation of Recursive IIR filters achieves stability at the cost of increased multiplication and latch complex- 

ities and considerable delay in output generation. The clustered look-ahead approach can not always guarantee 

stability [1]. We present a new scheme (referred to as distributed look-ahead) which is a compromise between 
the two existing look-ahead approaches. The proposed scheme appears to avoid some of the potential drawbacks 

in various pipelined implementations of recursive niters. Our work shows that, in order to attain stability, the 
output samples need not be clustered or equally scattered. Indeed, in many filter design problems, stability can 
be maintained by using unequally distributed past output samples. When compared with the scattered approach, 
the proposed scheme uses fewer number of pole-zero cancelations and the introduced roots are not necessarily at 

the same radii as the original filter poles. Hence, the proposed distributed look-ahead scheme has reduced multi- 
plication and latch complexities, higher area-efficiency and it produces outputs with reduced delay. The proposed 
DLA scheme has been used for high-speed implementation of both 1-D and 2-D Recursive Digital Filters. 

The look-ahead pipelined recursive filters discussed above are obtained primarily via transformation of a 

given un-pipelined transfer function. For these approaches, it is assumed that the un-pipelined transfer function 
has already been designed as an intermediate step. In this project, we also present a new algorithm (OM-LA) 

for direct and optimal estimation of the coefficients of recursive filters in look-ahead pipelined form. OM-LA is 
developed by appropriate modification of a recently proposed optimal method (OM) for designing un-pipelined 
filters (developed previously by the PI as part of a project supported by the AFOSR). It is demonstrated that the 
proposed one-step approximation can achieve superior match with reduced pipelined filter order because it does 
not rely on pole-zero cancelations as in current LA pipelining approaches. It is also shown that the denominator 
polynomial can be constrained to possess any of the possible look-ahead configurations. Unlike some existing 
methods, OM-LA minimizes the true time-domain fitting error-norm between the prescribed and the estimated 

impulse response and produces superior results. 
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Section - 3.1 :  IDENTIFICATION OF 1-D RATIONAL SYSTEMS FROM INPUT-OUTPUT DATA 

SUMMARY 

A theoretical and algorithmic framework is proposed for optimal identification of rational transfer function 

parameters of discrete-time linear systems from Input-Output (10) data. The nonlinear criterion is theoretically 
decoupled into a purely linear problem for estimating the optimal numerator and a nonlinear problem for the 
optimal denominator. The proposed decoupled approach has reduced computational requirements when compared 

to existing algorithms which estimate the parameters simultaneously. 

I. INTRODUCTION : Identification of unknown Linear Time-Invariant Discrete-Time systems is a critical prob- 

lem in signal processing and control theory [1-13,15-22]. This work addresses the problem of optimal identification 
of the parameters of rational transfer functions by Least-Squares (LS) fitting of observed input-output sequences. 

Optimization of the LS criterion for this problem requires multi-dimensional nonlinear optimization [1, 2, 15-21]. 

Many existing algorithms either modify or linearize the true nonlinear error criterion to estimate the unknown 
parameters simultaneously. This work will demonstrate that the optimal rational model identification problem 

belongs to a special class of mireif-nonlinear optimization framework where the linear and nonlinear variables 
separate [14]. The true nonlinear criterion will be theoretically decoupled into : 

(i) a purely linear problem for obtaining the optimal numerators and 

(ii) a nonlinear problem of reduced dimensionality for determining the optimal denominators. 

The decoupled criteria retain the global optima of the original criterion. Only the criterion for the denominator 
is nonlinear but it possesses a weighted-matrix structure which is utilized for minimizing it iteratively. The 
optimal numerator is estimated in one step. Hence, unlike some existing algorithms which estimate both sets of 
parameters iteratively [2], the proposed computational algorithm has reduced computational requirements. 

II. PROBLEM FORMULATION   : Rational transfer function representations of a SISO plant, 

ffM _  a(0) + a(l)z-1 + --- + a(q)z-< A{z)_ 
{ ' l + b(l)z-i + --- + b(p)z-P     = B{zY K ' 

= h(0) + /i(l)*-1 + ... + h(N- I)*-*""1) + • • •, (2) 

where, 6(0) = 1. Fig. 1 depicts what is commonly known as the output-error model of a plant, where, y0(n) and 
y(n) denote the true and observed (possibly noisy) output signals, respectively, and v(n) denotes the observation 
or measurement noise. Let, 

x A  [a;(0)    x(l)     ■■■    x(N - 1)]T (3a) 

and 

y A [2/(0)    j/(l)     •••    y(N-l)f (36) 

denote the vectors containing the N input and observed samples, respectively. In vector form, the unknown model 
parameters are defined as, 

a A   [a(0)    a(l)     • • •    a(q)f (4a) 

and 

b A  [1    6(1)    • • •    b(p)f. (46) 

The problem under consideration in this part of the project can be stated as follows : 
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Given the observed output data y and the input data x, estimate the optimal model parameters a and b by 
minimizing the following LS model-fitting criterion : 

minEk')-#4wo}|2- (5) a,b f-* rv'    B( z 

Regarding methods related to this work, Kaiman [1] had defined an equation error to solve this problem (KM), 
whereas Steiglitz and McBride (SMM) iteratively minimized a modified error criterion [2] to estimate both sets 
of parameters simultaneously. 

III. PROPOSED METHOD (OM-IO) : Let Hb(z) be the inverse filter corresponding to B(z), i.e., 

B{z)Hh{z) = 1. (6) 

This is a convolution operation and hence, in matrix notations, 

BJHJ = IN, (7) 

where, Ijv denotes an TV x N identity matrix; Bj, and H& are convolution matrices formed as, 

Bb(i,j) A b(i-j), (8a) 

and 

H»(i,i) A Hb(i-j), for, i, j = 1,.. .,N (86) 

Note that both these matrices are lower-triangular. In partitioned form, 

BT. 
Bb = Hb =   [H,|Hr]. (9) 

where, Bu € IR7Vx(?+1), B G mNx^N-q-1\ H, £ ]RJVx(«+1) and Hr G JRN^N-q-1\ Using (6) and assuming 
that the input is causal, i.e., x(n) = 0, for n < 0, the optimization criterion in (5) can be restated as, 

N-l 

min V] \y(i) - x(i)   *   hb(i)   *   a(i)\   , (10) 
a,b    '    *   L J 

«=0 

where, * denotes the convolution operation. In matrix notations the problem is equivalent to : 

min||e(a,b)||2 A  min||y - XH;a||2, where, (11a) 
a,b ^=    a,b 

X(i,j) A x(i-j)        for, i,j = l,...,N. (116) 

This is a mixed optimization problem where the linear and nonlinear variables appear separately. If H/ (i.e., b) 
is known, then the linear LS estimate of the numerator, 

ä A (XH,)#y, (12) 

where, (XH,)# A ((XH,)T(XH,))-1(XH,)T denotes the pseudo-inverse of (XH,).  Plugging ä back in (11a), 
the optimization criterion for b is given by, 

min||e(b)||2 A  min||y - PxH,y||2 =  minHtliv - PXH,]y||2 (13) 
b =      b b 
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where, PXH, A XH,((XH,)T(XH())~
1(XH,)T, denotes the projection matrix of (XH,). In (13), the parameters 

in b are indirectly related to the error criterion in a rather complicated manner through PXH, • Next, the inherent 

matrix-structure of the criterion in (13) is utilized to reparameterize the error criterion by relating it directly to 
the coefficients in b. 

Let Xi(z) be the inverse of the input sequence X(z), i.e., X(z)Xj(z) =  1. Similar to (6) and (7), in matrix 
notation, 

X/X = IN, (14a) 

where, Xj G IR   x    is also a lower triangular matrix defined as, 

X/ A xi(i - j), for. i,j = !>• ,N. (146) 

For finite TV, this inverse exists as long as the first element of the input sequence is non-zero, i.e., x(0) ^ 0. This 
is not a major restriction for the causal systems under consideration in this work because the output will have 
non-zero leading values only when there is non-zero input. But it would be desirable that X(z) be minimum- 

phase, otherwise -Xj(z) may be unbounded for some values of z which in turn may result in very high magnitudes 
of xj(n) for large N. Combining (7) and (14) and using the partitioned forms of (9), 

BjXfXHj, IN 

BT 

BT 
X/X [H; Hr 

BjX/XH, 

BTX/XH, 

BjX/XHr 

BTX7XHr 

H?+i) I      0(?+i)x(iv-?-i) 

0(JV-J-l)x(j+l)       I      I(N-q-l)x(N-q-l)_ 

(15a) 

(156) 

The bottom-left corner element shows that the TV x (N — q — 1) matrix XjB and the TV x (q +1) matrix XH; are 

orthogonal, i.e., (BTX/)(XH/) = 0(N-q-i)x(q+i)- By construction, ranfc(XjB) + ranfc(XH;) = TV. Hence, 
according to a property of projection matrices, 

XTB + P. XHi LN. 

Using this result in (13), the following reparametrized optimization criterion is obtained, 

min  ||PX]-By| |
2 =  min  ||X|'B(BTX/X|'B)-1BTX/y||2 

b 

=   min yTXjB(BTX/X|'B)-1BTX/y. 
b 

In order to obtain an expression more convenient for optimization, define, 

z A X/y. 

It can be easily shown that, 
BTz A Zb, 

where, the matrix Z is constructed with the elements of z as, 

(16) 

(17a) 

(176) 

(18) 

(19a) 

Z A 

z(q+l) z(q) 
z(q + 2)      z(q + l) 

<P) KP-I) 

z(N-l)    z(N-2) 

*(0)      0 
*(1)    *(0) 

0 
0 

z(0) 

z(N -p-l)_ 

(196) 
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Using (19a) into (17), the optimization criterion can be re-written as, 

min bTZT(BTX/XfB)-1Zb. (20) 
b 

Equation (12) and the reparametrized criterion in (20) are the final decoupled forms. It should be emphasized 

here that, thus far, the theoretical derivations are mathematically exact, i.e., no linearization, approximation or 

modification have been introduced at the outset. 

According to the Theorem stated in the Appendix [14], if b is estimated by minimizing the criterion in (20) 

and if that estimate is utilized for computing a using (12), then the resulting estimates are the unique and global 

minimizers of the original criterion in (5) or (11). Furthermore, once the optimal b is known, the estimation of 

the optimal a in (12) is a linear problem. But more importantly, a needs be computed only once. 

Algorithm : The nonlinear criterion in (20) appears to be a weighted quadratic in the unknown vector b. 
But the weight matrix (BTX/XjB)~1 itself is dependent on the unknowns in B. The computational algorithm 

exploits this weighted quadratic structure of the criterion. At fc-th iteration, the algorithm minimizes, 

mm 
b 

bT[zT(BT(*-l)X/XTB(*-l))-lZ]b! (21) 

where, B^-1^ is formed by using the estimate of b obtained at the previous iteration. b(°) A [1 0 • • -0]T can 
be used as the initial estimate of b to start the iterative process. Otherwise, the initial estimates could also be 
found by setting the middle matrix (BTX/XjB)_1 to identity, i.e., by optimizing, 

mm 
b 

bTZTZb. (22) 

To ensure non-trivial solutions, 6(0) is set to unity. Once the iterations converge, the estimated b is used in (12) 

to linearly estimate the numerator coefficient vector a. 

On the Relationships with Other Methods : The proposed theoretical and algorithmic framework appears 
to be the most general one in its own class of 1-D deterministic rational System Identification (SID) algorithms. 
In fact, a large body of work on SID can be formulated as special cases of OM-IO. For example, in case of Impulse 
Response (IR) fitting, i.e., when x{n) = S(n) and y(n) A hd(n), the desired IR, an optimal method (OM) has 

been developed recently [8, 9]. The work in this part of the project may be considered to be a further generalization 
OM. The Evans-Fischl Method (EFM) [5] was an early precursor of OM. But EFM dealt only with the IR fitting 
problem and it is applicable only for the strictly-proper case, i.e., when, p = q + 1. Furthermore, the recently 
proposed Maximum-Likelihood Method for exponential modeling (known as, KiSS or IQML) is basically a complex 
version of EFM with conjugate-symmetry constraints imposed on the B(z) coefficients [6, 7]. Hence, KiSS/IQML 
is also an important special case of OM-IO. Furthermore, when p = q + l, the initialization step of OM is identical 
to Prony's Method [10] or Covariance Method of Linear Prediction [11, 13]. For general cases, Shanks [3] and 
Burrus-Parks [4] also estimated the denominator using the initialization step of OM. For numerator, the linear 

estimator in (12) was used by Shanks whereas Burrus-Parks used, a(k) = J2i=o K*)hd(k — i), for k = 0,1,..., q. 

Finally, the formulation presented in here appears to be quite well-suited for deconvolution [22]. Specifically, if 
the output and the Channel IR (or, alternately, the estimates of a and b) are available, then the criterion in (11) 

can be appropriately modified to obtain an LS or MLE of the unknown input vector x. 

IV : SIMULATION RESULTS : In all figures, the true and modeled impulse responses are shown in solid and 

dotted lines, respectively. 

Simulation 1 : In this case, white noise was passed through an ARMA(7,3) system with an arbitrary impulse 
response. The output was corrupted with uncorrelated white noise. The first N = Z0 input and output samples 
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were collected for identifying the system. True model orders were used for identifying the system. The results 

with 30dB and 15dB SNR values are shown in Fig. 2A and 2B, respectively. 

Simulation 2 - Model Reduction : For the same data sets of Simulation-1 an ARMA(5,3) model was used for 

identifying the system. Note that the denominator order is less than the true order in this case. The results with 
30dB and 15dB SNR values are shown in Fig. 3A and 3B, respectively. 

The results of Simulation-1 indicate that the proposed algorithm is able to match the unknown model impulse 
response very closely by minimizing the output error norm. Simulation-2 demonstrates that the algorithm also 

has the capability of obtaining reduced order models with good fit. 

Number of Iterations for Convergence and CPU Times : For 30dB SNR, the number of iterations for 
convergence for actual and reduced order cases were found to be 8 and 5, respectively. The iterations were 

terminated in both cases when ||b;+i — b<[|2 < 10~3 was achieved in each case. The corresponding CPU times 
on VAX-8550 were 3.0 and 2.59 seconds, respectively. Similar differences in performance were found for other 

SNR values also. In general, the algorithm showed rapid convergence in all simulations performed. But if the 

unknown system is non-minimum phase or if the SNR in the output data is too low, the algorithm may converge 
to a suboptimum or the estimates may oscillate. In order to guarantee convergence, the proposed iterative 

transformation must be a contraction mapping. This may be difficult to demonstrate in general for any arbitrary 
input-output data set. Theoretical analysis of the convergence properties of the iterative algorithm needs to be 

performed. 

REFERENCES 

[1] R. E. Kaiman, "Design of a Self Optimizing Control System," Trans. ASME, vol. 80, pp. 468-478, 1958. 

[2] K. Steiglitz and L.E. McBride, "A Technique for Identification of Linear Systems", IEEE Transactions on 

Automatic Control, vol. AC-10, pp. 461-464, 1965. 

[3] J.L.Shanks, "Recursion Filters for Digital Processing", Geophysics, vol. 32, pp. 33-51, 1967. 

[4] C. S. Burrus and T. W. Parks, "Time Domain Design of Recursive Digital Filters," IEEE Transactions on 

Audio and Electro-Acoustics, vol. AU-18, pp. 137-141, June, 1970. 

[5] A.G. Evans and R. Fischl, "Optimal Least Squares Time-Domain Synthesis of Recursive Digital Filters", 

IEEE Transactions on Audio and Electro-Acoustics, vol. AU-21, pp. 61-65, 1973. 

[6] R. Kumaresan, L. L. Scharf and A. K. Shaw, "An Algorithm for Pole-Zero Modeling and Spectral Estimation," 

IEEE Transactions on Acoustics Speech and Signal Processing, vol.ASSP-34, pp. 637-640, June, 1986. 

[7] R. Kumaresan and A.K. Shaw, "Superresolution by Structured Matrix Approximation", IEEE Transactions 

on Antennas and Propagation, vol. AP-36, pp. 34-44, 1988. 

[8] A. K. Shaw, "Optimal Identification of Discrete-Time Systems from Impulse Response Data," accepted for 

publication, IEEE Transactions on Signal Processing, Oct., 1991. 

[9] A. K. Shaw, "An Optimal Method for Identification of Pole-Zero Transfer Functions,", International Sym- 

posium on Circuits and Systems, San Diego, pp. 2409-2412, May, 1992. 

[10] R. Prony, "Essai Experimental et Analytique etc.," L'Polytechnique, Paris, 1 Cahier 2, pp. 24-76, 1795. 

[11] L.B. Jackson, Digital Filters and Signal Processing, Kluwer, Boston, 1986. 

[12] T. W. Parks and C. S. Burrus, Digital Filters, Prentice-Hall, 1987. 

82 



[13] L. L. Scharf, Statistical Signal Processing - Detection, Estimation and Time Series Analysis, Addison-Wesley, 

Reading, MA, 1990. 

[14] G. H. Golub and V. Pereyra, "The Differentiation of Pseudoinverses and Nonlinear Problems Whose Variables 

Separate," SIAM Journal on Numerical Analysis, vol. 10, no. 2, pp. 413-432, Apr., 1973. 

[15] J. W. Bayless and E. 0. Brigham, "Application of the Kaiman Filter to Continuous Signal Restoration," 

Geophysics, vol. 35, pp. 2-23, Feb., 1970. 

[16] D. Graupe, Identification of Systems, Huntington, New York; Littleton Education Co., 1976. 

[17] P. A. Jansson, R. H. Hunt and E. K. Plyler, "Resolution Enhancement of Spectra," Journal of the Optical 

Society of America, vol. 60, pp. 596-599, May, 1970. 

[18] M. Morf, G. S. Sidhu and T. Kailath, "Some New Algorithms for Recursive Estimation in Constant, Linear, 

Discrete-Time Systems," IEEE Transactions on Automatic Control, vol. AC-19, pp. 315-323, Aug., 1974. 

[19] T. Söderström and P. Stoica, System Identification, Prentice Hall, NJ, 1987. 

[20] L. Ljung, System Identification: Theory for the Users, Prentice Hall, NJ, 1987. 

[21] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, 1983. 

[22] J. M. Mendel, Maximum-Likelihood Deconvolution, Springer-Verlag, New York, 1990. 

APPENDIX : Optimality Properties of the Separate Estimators 

THEOREM - (Adapted from Theorem 2.1 in [14]) : If b is a global minimizer of ||e(b)||2 in (13) and ä is 

estimated using that b as in (12), i.e., 
ä A (XH,)#y, (Al) 

where, H; is formed using b, then ||e(a, b)||2 is a global minimizer of ||e(a, b)||2 and ||e(a, b)||2 = ||e(b)||2. 
Conversely, if (a,b) is a global minimizer of ||e(a,b)||2, then b is a global minimizer of ||e(b)||2 and 
||e(b)||2 = ||e(a,b)||2. Finally, if there is an unique ä among all possible minimizing pairs of ||e(a, b)||2, then a 
must satisfy (A.l). 

PROOF : See [14]. 
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Section - 3.2 :  IDENTIFICATION OF 1-D RATIONAL SYSTEMS IN THE FREQUENCY DOMAIN 

SUMMARY 

A new Frequency-Domain (FD) approach is presented for optimal estimation of rational transfer functions 

coefficients. The proposed method seeks to match any arbitrarily-shaped FD specifications in the Least-Squares 
(LS) sense. The desired specifications may be arbitrarily spaced in frequency. The design is performed directly 
in the digital domain and no analog to digital transformation is necessary. The proposed method makes use of 

the inherent mathematical structure in this rational modeling problem to theoretically decouple the numerator 
and denominator estimation problems into two smaller dimensional problems. The denominator criterion is 

nonlinear but possesses a weighted-quadratic structure which is convenient for iterative optimization. The optimal 

numerator is found linearly by solving a set of simultaneous equations. The decoupled criteria retain the global 
optimality properties. The performance of the algorithm is demonstrated with some simulation examples. 

I : Introduction 

Traditionally, digital filters are designed by performing Impulse Invariance or Bilinear transformation on available 
analog designs. Classical analog designs utilize polynomial approximations to match standard filter shapes such 

as, Low-Pass, High-Pass etc. [9, 10]. An obvious drawback of classical analog design techniques is that filters 

with arbitrary or non-classical specifications, as in case of a notch filter, can not be obtained. In this part of 
the report, a direct method for frequency-domain design of digital IIR filters is proposed. The method seeks to 
match a desired frequency response with any arbitrary shape by minimizing the optimal LS fitting error criterion. 
The LS criterion for this problem involves multi-dimensional nonlinear search and several linearized or modified 
approaches have been developed [2, 3, 21, 31]. There have been some ad-hoc attempts on designing digital filters 
with special shapes [9, 12]. Frequency domain version of Prony's algorithm has also been presented recently 
[14, 15, 19, 25]. But it appears that the underlying mathematical structure inherent in this rational modeling 
problem have not been fully exploited. In this work, the frequency-domain least-squares problem is formulated by 
identifying the orthogonal projection space which is shown to be formed entirely by the denominator parameters. 

The optimal denominator is estimated by minimizing the exact projection space which is independent of the 
numerator coefficients. The optimal numerator estimation problem turns out to be a simple linear LS problem. 

It is demonstrated in this work that the optimal rational identification problem in the frequency-domain 
belongs to a special class of mirerf-nonlinear optimization framework where the linear and nonlinear variables 
separate [13]. It is further shown that the true nonlinear criterion can be decoupled into : 

(i) a purely linear problem for obtaining the optimal numerator coefficients and 

(ii) a nonlinear problem of reduced dimensionality for determining the optimal denominator coefficients. 

This important underlying theoretical and algorithmic aspects of designing digital filters in frequency-domain, 
appears to have remained mostly un-utilized. After decoupling, the denominator criterion possesses a convenient 
weighted-matrix structure which is then utilized to develop an iterative minimization algorithm. Once the de- 
nominator is estimated, the optimal numerator is found only once with linear LS. The decoupled criteria retain 
the global optima of the original criterion. The proposed approach is closely related to some time-domain results 
developed recently by the present author [8, 16, 17]. The design methodology described here will be based on 

matching desired Discrete-Time-Fourier-Transform (DTFT) values which may be arbitrarily spaced in frequency. 
But the algorithm can be easily modified if the desired specifications are available in the form of DFT values. 

The Section is arranged as follows : In Subsection II, the rational transfer model is defined and the frequency- 



domain identification problem is stated. In Subsection III, some existing methods addressing this problem are 
briefly outlined. The details of the proposed decoupled solution is presented in Subsection IV. Some simulation 

examples are given in Subsection V to demonstrate the performance of the proposed approach. 

II : The Rational Transfer Function Model and The Frequency-domain Design Problem 

An ARMA(p, q) digital filter can be modeled as : 

fit l + b(l)z-1 + --- + b(p)z-P     = D(z) w 

Let, 
h A   [A(0)    h{\)    ■■■    h(N- l)f, (2a) 

be the vector with the first N significant samples of H(z) and 

a A   [ao    ai     • • •    aq]      and (26) 

b A   [1    6i     • • •    bp]T (2c) 

be the numerator and denominator coefficient vectors, respectively. 

Let Hd(z) represent the desired HR filter which needs to be modeled as H(z) in (1). Using the notations of 

equation (1), let Hd{uk), N(uik) and £>(wfc) be defined as the frequency response values of Hd(z), N(z) and D(z), 

respectively, at z = e^Wk. The frequency-domain identification problem can be stated as follows : 

Given, Hd(uk), at fc = 0,1,2,..., JV — 1, the desired frequency response values (possibly arbitrarily spaced), 
estimate the parameters in N(uik) and D(uk) by optimizing the following LS error criterion : 

JV-l 

min lie, "2 N(ui) „„    A  min£  i^)--^   . (3) 
a,b =    a,b   f—*  I L>(U>i) 

i=0 

III : Some Existing Frequency-Domain Direct Design Methods 

The problem stated in (3) is a nonlinear optimization problem and standard nonlinear optimization schemes can 
be used [7, 11]. But these generic algorithms are known to be sensitive to initial choice of estimates and they 
do not specifically make use of the unique mathematical structures inherent in this problem. Some linearized 
methods that specifically address the design problem stated in (3), have also been proposed [2, 3]. More recently, 
a decoupled algorithm that utilizes divided-differences and Newton-Raphson, has been reported in [14, 28]. In 
order to motivate the proposed algorithmic framework, brief outlines of some of the direct FD design methods 

are given next. 

III.l : Levy's Method (LM) 

The following criterion was proposed by Levy [2] as a frequency-domain counterpart of Kalman's original work 
in the time-domain [1] : 

N-l 2 

min||eLM||2 A  min V  D(w.-)ffd(w.-) - JV(w,-)   . (4) 
a.b =    a.b   *—'  I 

Note that the original error criterion in (3) is modified in Levy's case. Apart from the obvious advantage of 
single-step linear solution, this algorithm does not possess any other optimality properties. It may also be noted 
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that Kalman/Levy-type approaches for the ARMA problem are closely related to Levinson's work on the all-pole 
problem [18], where only the first term of the error criterion was minimized. The AR parameter estimation work 

is further related to Prony's method [19] and Pade Approximation [20]. Similar error criterions for the ARMA 

problem have been later rediscovered [21] and analyzed [22]. 

III.2 : Sanathanan-Koerner's Prefiltering Method (SKM) 

The earliest work that most closely approximates the true LS fitting-error criterion, appears to be due to 

Sanathanan and Koerner [3]. Their goal was to improve upon Levy's work which did not really attempt to 
optimize the true criterion in (3). In this case, an initial estimate of the denominator coefficients, D^°\u)o) is first 

obtained by minimizing Levy's criterion in (4) and then the following modified fitting error criterion is optimized 

at the k-th iteration [3], 

N- 
2          .   ^ \D(wj)Hd(ui) N(wj) 

mm esjd     A  min >        n/.   1W—r ^,.   1W—r 
a,b  "      "     =    a,b   4^ I   D(*-1)(wi) D(k-l)(wi) 

(5) 

where, I?(*-1)(w,-) denotes the denominator estimate at the previous iteration which is used as a prefilter for 
obtaining the estimates at the following iteration step. Note that, (5) closely approximates (3) and both are 
identical if, D(uii) = £)(*_1)(w,). But using (5), the unknown parameters in a and b can be estimated simultane- 
ously by solving a set of linear equations. A time-domain counterpart of Sanathanan-Koerner's method was later 

discovered independently by Steiglitz and McBride in [4], though the later work is definitely more well-recognized 

in Signal Processing and System Identification literature [9, 10, 23, 24]. 

III.3 : Kumaresan's Decoupled Method - Generalized (KM-G) 

The Frequency-Domain error criterion in (3) has been recently decoupled by Kumaresan in [14, 15, 25, 28], where 
divided-difference matrices [26] have been utilized. Similar to a time-domain decoupled algorithm due to Evans 
and Fischl (EFM) [6], this approach was originally proposed for strictly-proper cases, i.e., when, p = q + 1. 
In the brief outline given below, appropriate modifications have been introduced in order to generalize KM for 
any arbitrary numerator and denominator orders. For q-th order numerator and p-th order denominator, the 

decoupled criterion for estimating the optimal denominator is : 

minh^C^CC*)-1^ 
b 

where, 
VS&[Hd(u>0)    Hd(Ul)     •••    Hd(wN^)Y 

denotes the vector containing the N samples of the prescribed frequency response data, 

C A B^UD 

6(1)     1      ...    0' 

B    A 

b(p) 

0 b(p) 6(1)    1 

eiR^ -l-q)x(N+p-q-l) 

(6) 

(7a) 

(76) 

(7c) 

r„,N+p-q-2 N+p-q-2 

U   A 

u 

u. N+p-q-3        N+p-q-3 
U 

U 

«0 
1 

«1 
1 

N+p-q-2i 
JV-1 
N+p-q-3 
N-l 

«JV-1 
1 

m(N+p-q-l)xN (Id) 



and    D A 

nr=o!,/o(u°-u') 
0 

0 

1  

nrjoW"1-"') 

n(UfvT-l— Ui) i = 0,i?SJV-l *■ w J 

GlR NxN 

with, «,- A eJa\ 

(7c) 

(7/) 

Defining f A UDh^1 G IR^'/V+P ?  1)xJV
) the error criterion can be written in the following weighted-quadratic 

form : 

(8) minbTFff(CCj:f)-1Fb, 

where, F   G TB,N  q  lxp+1 is formed using the elements off as follows 

F A 

f(p) 
/(P+1) 

/(P-1) 
HP) 

/(0) 
/(I) 

f(N-q-2)} 

(9) 

L/(tf+p-«-2)    /(AT+p-g-3) 

The optimal denominator coefficients are obtained using an iterative algorithm. Once the optimal denominator 

is available, the numerator is estimated as : 

a = (DbVq+l)*h"d, (10) 

where, * denotes the pseudo-inverse and 

D6 A 

0 
•D(wo) 

0 1 

U,+i A 

D&T)    ■■■ 

0 0 
I        gjwo eJ'2ai0 

1      e^1        ej2wi 

0 

0 

l 
D(wN_i) . 

emNxN    and (11) 

ejqu0 

\    gj'wN-i     eJ2ww-i     ...    ejq>*>N-i 

emNxq+1. (12) 

It can be easily verified that for the special case of p = q + 1, the general criteria given here will be exactly same 
as the one given in [14, 28]. It may be emphasized here that the frequency-domain LS algorithms in [2, 3] are, 

(i) Approximations or modifications of the original criterion in (3), and 

(ii) (p + g)-dimensional nonlinear optimization problems for estimating a and b simultaneously. 

In contrast, the decoupled method (KM-G) estimate a and b separately. But simulation experiments indicate that 
the desired minimum of the criterion in (8) may not be achieved with only an Evans-Fischl type LS minimization 
of (8). Instead, a further step of Newton-Raphson had to be incorporated in the algorithm in order to achieve the 
desired optimum [14]. Unlike KM-G, the optimally decoupled method developed in this work reaches the desired 
optimum criterion more directly and without using Newton-Raphson. 

It may be also noted that Signal Processing Toolbox of the widely popular MATLAB software package 
provides a direct frequency-domain design macro called yulewalk, which basically implements a modified Yule- 
Walker method developed by Friedlander and Porat [31]. This method does not attempt to minimize the true 
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criterion in (3). Instead, it attempts to fit the deterministic correlation values to obtain the rational model 

parameters by essentially minimizing an equation error. The simulation section includes some comparison of the 
performance of the proposed method with this approach. 

IV : Proposed Method (OM-DTFT) 

For time-domain rational model identification problems, a new framework has been recently presented for decou- 

pling the denominator and numerator problems into two separate but lower-dimensional optimization problems 

[8, 16, 17]. In this Section it is shown that the nonlinear frequency-domain criterion of (3) can also be decoupled 

in a similar fashion. 

Let Hb(z) be the inverse filter corresponding to D(z), i.e., 

D(z)Hb(2 1. (13a) 

Clearly, this is a convolution operation in time-domain and it can be expressed using matrix notation as, 

DHj = I •JVj (136) 

where, Ijy denotes an N x N identity matrix; D G IRjVx7V and Hj G JRNxN are defined below in appropriate 
partitioned forms which will be useful in the algorithm : 

D A 

1 
6(1) 

%) 

b(q + 1) 

6(p) 

and Hj A 

0        0        0 
0 0        0 

1 0        0 

6(1)      1        0 

b(p) 

M0) 
Ml) 

hb{N-l) 

6(1)      1 

0        0 
0        0 

0        0 

0        0 

6(1)      1 

0       | 
0       j 

o  " 
0 

•  Mi)   1 0 

••  Mo) 

A   [H,|Hr], 

(14a) 

(146) 

where, Bu £ IR^*^1), B G mNx^N-^l\ H, G IR^«^ and Hr G m.Nx^N-g-1\ If the vector h, defined in 
(2a), represents the finite length impulse response vector containing N significant Impulse Response values, the 
frequency response at any frequency w,- will be given as, 

JV-l 

H{ui) A H{z)\t=eiUi  =   £ h{n)e-^n (15) 
n=0 
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Stacking the model frequency response values at all the N specified frequencies, wo, wi>   • • •, WAT-I, the model 
frequency-domain vector can be expressed as : 

h„ A 

ff(e>'w°) 

1      e-i"° 
1      e-J'"1 

1       e-j*N-, 

(16a) 

e-j(N-l)w0    -, 

e-j(N-l)Wl 

0-j(JV-l)wW_l 

By definition, 

A Wh. 

H(z) A S = Hb(z)N(z), using (13a), 

(166) 

(16c) 

(17) 
= D(z, 

where, the right-hand-side represents convolution of the numerator coefficients with the inverse sequence, ht(n 

(corresponding to H\,(z)). Hence, it can be shown that the model impulse response vector h can be expressed as 

h = H,a. 

Using this in (16), 
K A WH,a. 

With these definitions, the frequency-domain filter design problem in (3) can be restated as, 

min||e||2 A  minllhf, 
a,b =    a,b   " 

WH,a 

(18) 

(19) 

(20) 

Equation (20) is an exact representation of the original criterion in (3), albeit in the vector-matrix form. This 
form of the criterion explicitly demonstrates the linear relationship between the fitting error e and a and also the 
nonlinear relationship between e and b through the matrix Hj. From this equation, it is also apparent that this 
is a mixed optimization problem where the linear and nonlinear variables appear separately. In order to decouple 

the numerator and denominator estimation problems, consider the following. If H; (i.e., b) is known, then the 
minimization of (20) will produce the linear LS estimate of a as follows, 

a A (WH,)#h£, (21) 

where, (WH,)#  A ((WH,)T(WH;))_1(WH()T. In practice though, b needs to be estimated also. Plugging ä 

back in (20), the optimization criterion for b is found as, 

min||h^-WH,a||2   =  minllh^ - WH,(WH,)#h^|2 

=  min|h£-PwH,h£|2 

a,b 

min||(Ijv WH,j«w    , (22) 

where, PWH, A WH,((WH,)T(WH,))-1(WH,)T, denotes the projection matrix of (WH,). Note that the 
numerator and denominator estimation problems are now in decoupled forms in equations (21) and (22), respec- 
tively.   But in (22), the parameters in b are related to the error criterion in a somewhat complicated manner 
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through PwHi • Interestingly, the operator (I/v — PWH, ) on h^ in (22) is the projection component in h^ that 
is orthogonal to the subspace spanned by the columns of WH/. Next it is shown that this orthogonal space can 
be completely defined by the denominator coefficients. 

IV. 1 : Reparameterization 

Let W/ denote the inverse of the DTFT matrix W, i.e., W/W = I/v- This inverse exists as long as the 

frequencies Wk's are distinct. In combination with (13b), 

DW/WHj = IJV. 

Use of the partitioned forms of (14) into (23) leads to, 

B^l TBjW/WH,    I    BjW/WHr 

(23) 

B3 
W/W[H,|Hr] = 

BTW/WH,    j    BTW/WH, 

^J+l) I %+l)x(N-q-l) 

0(AT-J-1)X(}+1)      I      I(JV-J-1)X(JV-J-1) 

(24) 

The bottom-left corner element shows that the N x (N — q — 1) matrix Wj B and the N x (q + 1) matrix WH; 

are orthogonal, i.e., (BTW/)(WH|) = 0(jv-?-i)x(g+i)- By construction, 

rank(WjB) + rank(WH,) = N. 

Hence, using a property of projection matrices, 

pwfB + PWH, = IJV- 

Using this result in (22), 

min   ||ei||2 A   min  ||PW
TBhwl|2 

=      b 
•lDTw  \,d\\2 -  min  ||W/B(BiW7W^B)-1B-'W/hf 

b 

= min h^TWfB(BTW/WfB)-1BTW/h^. 
b 

(25a) 

(256) 

(26a) 

(266) 

(26c) 

Note that this reparameterized criterion is directly related to b, as desired.   In order to further simplify this 
expression, define a vector z of length N as, 

z A W7h£ (27) 

such that the criterion in (26) becomes, 

It can be easily shown that, 

min  zTB(BTW/WjB)-1BTz. 
b 

BTz A Zb, 
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where, the matrix Z is constructed with the elements of z as, 

z(q+l) z(q) •••    z(0)      0 

Z A '(P) KP-I) z(l) 

.z(iV-l)    z(W-2) 

Using (29) in (28), the optimization criterion can be rewritten as, 

min bTZT(BTW/WjB)-1Zb. 
b 

*(0) 

z(N-p-l) 

(296) 

(30) 

Note that this alternate form has a weighted-quadratic structure which is convenient for minimization. Equations 
(21) and (30) represent the final decoupled estimators to be utilized in the algorithm described below. It should 
be emphasized here that, thus far, the theoretical derivations are mathematically exact, i.e., no linearization, 

approximation or modification  have been introduced at the outset. 

Regarding optimality properties of the decoupled estimators, theoretical results in [13] can be used to prove 
that if b is estimated by minimizing the criterion in (30) and if that estimate is utilized for computing ä using 
(21), then the resulting estimates are the unique and global minimizers of the criterion in (20). The advantage 
of estimating the linear and nonlinear parameters independently is reduction in computational load because the 
iterative part is only with respect to the p coefficients in 6. Based on the optimal b, estimation of the optimal a 

is a simple linear least squares problem. But more importantly, a needs to be computed only once. 

IV.2 : Algorithm 

The nonlinear optimization criterion in (30) possesses a very useful matrix structure. Specifically, the expression 
appears to be a weighted quadratic criterion in the unknown vector b. The matrices Z and W/ are known. But 
the weight matrix (BTW/Wj B)_1 itself is dependent on the unknowns in B. The computational algorithm will 
utilize this weighted quadratic structure of the criterion to formulate the iterations. Specifically, the algorithm 

minimizes the following quadratic error criterion at fe-th iteration step : 

min 
b 

bT[ZT(BT(fc_1)W/WfB(*-1))-1Z]b A  min bTRtb (31a) 

where, B(*_1) is formed by using the estimate of b obtained at the previous iteration and 
Ri A [ZT(BT ~ W.fWjB(*:-1))-1Z] is the weight-matrix. An initial estimate of b is necessary to start 

the iterative process, b^0^ A [1 0 • • -0]T can be used or the initial estimates could also be found setting the 

middle matrix (BTW/WjB)_1 to identity, i.e., by optimizing, 

min bTZTZb A  min bTR2b 
=      b 

(316) 

where, the weight-matrix R2 A ZTZ. In order to ensure non-trivial solutions, the first term of the denominator, 
6(0) is set to unity. The computational algorithm is similar in nature to the time-domain counterparts developed 

recently [8, 16, 17]. As outlined in the Appendix, the algorithm has two phases. In Phase-1, the criterion in (31a) 
is minimized by neglecting the variation w.r.t. the weight matrix. Simulation experience shows that this Phase 
alone brings the error quite close to the minimum. But if necessary, the variation of the weight matrix may also 

be included by invoking Phase-2, where the gradient of the entire criterion is set to zero. Once the iterations 
converge, the estimated b is used in (21) to linearly estimate the numerator coefficient vector a. 
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V : Simulation Results 

Two examples are included to demonstrate the effectiveness of the proposed algorithm. The first example considers 
a Lowpass filter design problem whereas the second one designs a Notch filter. In all plots the frequency response 

values are displayed up to half the sampling frequency. For the proposed method, only the Phase-1 results are 
given. 

Simulation-1 : Lowpass Filter Design 

Magnitude response values at 56 frequency points around the unit circle were taken for the matching purpose. In 

Fig. 1 the estimated response with p = 6 and q = 5 for the proposed method are shown by the dashed curve and 

the solid line represents the desired response. The algorithm converged in 6 iterations. For the sake of comparing 
with a widely used direct method, the Modified Yule-Walker method [30, 31] available in the MATLAB software 
package was used to design a 6th order filter. The magnitude response fit for this case is shown as the dot-dash 
line in Fig. 1. 

Simulation-2 : Notch Filter 

A Notch Filter design problem was considered in this case. The magnitude response values at 101 frequency 
points around the unit circle were taken. The estimated response with 10th order denominator and 9th order 

numerator as produced by the proposed method as well as the desired response are shown in dB scale in Fig. 2 

in dashed and solid lines, respectively. The algorithm converged in 11 iterations. The dash-dot line again shows 
the fit when the Modified Yule-Walker method [30, 31] was used to design the 10th order filter. 

Discussion 

The first example has been adopted from [14, 28]. The results presented above for the proposed method did not 
have to make use of any generic nonlinear optimization technique, such as Newton-Raphson to reach the final 
optimum. Also, during the minimization process, all the coefficients were enforced to be real and hence the filter is 
readily realizable. It may also be stated here that the final designs were stabilized using the macro called Polystab 
available in MATLAB [29, 30], where the unstable roots are flipped inside the unit circle. The simulations clearly 
demonstrate that the proposed method can closely match arbitrarily shaped frequency response data and it also 
appears to perform better than a widely used method for direct design. 
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Lowpass Filter Design 
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Fig. 1 : The desired Lowpass response is shown as the solid line. The estimated responses using the pro- 

posed method and the Yule-Walker method are shown in dashed and dot-dash lines, respectively. 
The filter order is six. 
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Notch Filter Design 

0.2 0.3 
frequency 

0.4 0.5 

Fig. 2 : The desired Notch Filter is shown as the solid line. The estimated responses using the proposed 

method and the Yule-Walter method are shown in dashed and dot-dash lines, respectively. The 
filter order is ten. 
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APPENDIX   : Computational Algorithm 

The criterion in (31a) is non-linear in b and hence it can not be minimized directly. But instead of using any 

generic non-linear optimization techniques, the inherent mathematical structure of the criterion will be utilized to 

develop an iterative computational algorithm. The algorithm consists of two phases. In Phase-1, the variations 
in the middle matrix (BTW/WjB) in (31a) is not taken into account in the derivative calculations, whereas in 
Phase-2 the gradient of the error norm in (31a) is set to zero. 

Phase-1 

The final form of the error vector in (31a) is rewritten as, 

e6 = WfB(BTW/Wj'B)-1Zb (Al) 

A VZb (A2) 

A V g : G (A3) 

= Vg + VGb, (A4) 

where, 
V A WfB(BTW/WfB)-1, (A5) 

and 

b A [6(1) 6(2)  ... b(p)f. (A6) 

If the matrix V is treated as independent of b, an expression for b can be easily obtained by minimizing ||e&||2 

w.r.t. b as follows : 

b =   - (VG)#Vg 

=   -(GTVTVG)_1GTVTVg. (A7) 

But since V does depend on the elements in b, (A.7) can only be computed iteratively. At the (z + l)-th step 
of iteration, VM is formed using the estimate of b found in the z'-th iteration step. This leads to the following 

iterative algorithm for computing b,+1 : 

b(*'+i) = 

where, 

1 

■[FlOGl-'tFBjg 
(A8) 

F« A G
T
V

TW
V« (A9) 

The iterations are continued until ||b,+i — b;||2 < 6, where 6 is an arbitrarily small number. It must be noted 
here that the iterations in (A.8) may not always converge to the absolute minimum of the error criterion in (31a) 
and hence the estimated b may not be the optimum one. This is because in (A.8) the variability of V w.r.t. b 
had been ignored while minimizing ||e||2. To achieve the optimum, the gradient of the complete expression of 
||e||2 must be set to zero. If desired, this can be done in Phase-2 of the algorithm which is outlined next. It may 

be noted here that the simulation studies indicate that the Phase-1 of iterations using (A.8) perform an excellent 
job of bringing the estimate very close to the optimum. Once the estimates of b converge, a is computed using 
(21). 
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Phase-2 

In this phase, the derivative of the matrix V w.r.t. b is taken into consideration while minimizing the fitting 
error norm. By setting the derivative of the squared norm in (31a) to zero, we obtain the updated t>(8+1) at the 

(i + l)-th iteration as, 
£('+!) =   - [S^Gj-^sWjg (A10) 

where (suppressing the superscript W), 

S A I/V + G'V'V, 

L A 
56(1) 

Zb 
ÖV 

db(p) 
Zb 

(Alia) 

(yl.116) 

ig)  A ^[wfB^WfB)-] = Wf ^(B-W,WTB)-  - WjB 
dBT 

+ BTW/Wj 
dB 

db(k) 

8b(k)_ 

(BTW/WjB)-1 

W/WfB 

(Alle 

and gdB   nas ^ne same form as the B matrix defined in (10) but it is filled with all zeros except at the locations 

where b(k) appears. For example, 

dB 
db(p) 

Once b(t+1) is found using (A. 10), b('+1) can be formed as, 

1 
b(''+i) = 

■o   •• 
0    •• 

•  1 
•   0 

0 •■ 
1 •• 

•  o- 
•   0 

0   "■ 

•   0 0   '■ .   1 

0    •• •   0 0   "• .   0 

.0    •• •   0 0    •• 
. 0 
• o. 

emNxN-g-l 

b0+i) 

-[SWGj-^sWjg 

(A12) 

(A13a) 

(A136) 

This minimization phase continues until bs+1  ~ b8 is reached and this optimum b vector corresponds to a 

minimum of the error surface of ||ef,[||. 
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Section   -    3.3    : OPTIMAL   ESTIMATION   OF   THE   PARAMETERS   OF   ALL-POLE   TRANSFER 

FUNCTIONS 

SUMMARY 

An algorithm is proposed for optimal estimation of the parameters of Auto-Regressive (AR) or all-pole 

transfer function models from prescribed impulse response data. The transfer function coefficients are estimated 

by minimizing the ^2-norm of the exact model fitting error. Existing methods either minimize equation errors or 

modify the true non-linear fitting error criterion. In the proposed method, the multidimensional nonlinear error 

criterion has been decoupled into a purely linear and a nonlinear subproblem. Global optimality properties of the 
decoupled estimators have been established. For data corrupted with Gaussianly distributed noise, the proposed 
method produces Maximum-Likelihood Estimates (MLE) of the AR-parameters. The inherent mathematical 
structure in the non-linear subproblem is exploited in formulating an efficient iterative computational algorithm for 
its minimization. The proposed algorithm provides an useful computational tool based on appropriate theoretical 

foundation for accurate modeling of all-pole systems from prescribed impulse response data. The effectiveness of 

the algorithm has been demonstrated with several simulation examples. 

l. INTRODUCTION 

Parameter estimation of unknown discrete-time linear systems is a fundamental problem in digital signal 

processing. Parametric models overcome the infinite dimensionality problem of non-parametric models with 
parsimonious representation of systems in terms of only a finite number of parameters. Over the last few decades 
these problems have been addressed in a large body of work in many different fields [1-17, 22, 24-38, 40-47]. 
Among many parametric models used in signal processing, Auto-Regressive (AR) or all-pole model is one of the 
most effective and practical representations. 

The AR-parameter identification problem arises both in stochastic and deterministic time-series analysis. 
There are probably two primary reasons for the wide popularity of AR modeling in statistical time series analysis. 
Firstly, according to Kolmogorov Theorem, any minimum phase transfer function H(z) can be represented by a 
possibly infinite order, stable minimum phase AR-model [9, 10]. This important theorem implies that even if an 
AR model is picked erroneously, the unknown Power Spectral Density can still be matched closely as long as a 
'large enough' AR model order is chosen. But the second and the main reason for the popularity of AR-modeling 
is that it is possible to obtain reasonably good suboptimal estimates of the unknown AR-parameters by solving a 
simultaneous set of linear equations. 

Modeling human vocal-tracts as all-pole systems and the corresponding Speech signal as AR-process is one 
of the most important applications of AR-modeling [4, 8]. Furthermore, two important modeling philosophies, 
viz., Linear Prediction (LP) and Maximum Entropy methods essentially produce the AR-parameters as their 

estimates, regardless of the true underlying signal model. 

This Section deals with the problem of estimating the parameters of an all-pole transfer function to match 
a prescribed or desired impulse response specification. The least-squares Impulse Response (IR) model fitting 
error has been chosen as the objective optimality criterion. Many well-known techniques developed for statistical 
time-series analysis have been used successfully in the deterministic case also [7, 10]. AR-model fitting may 
be considered a special case of estimating the unknown parameters of general ARMA (or pole-zero) models. 
ARMA parameter estimation is known to be a multidimensional nonlinear optimization problem and there have 
been extensive work on this subject [1-7, 10, 12, 13, 15, 16, 24-31, 34-37, 41-43, 47]. In one of the earlier 
works, Kaiman [1] had proposed a linearized and approximate 'equation error' minimization technique which 
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produces suboptimal estimates. Several two-step procedures where the denominator and numerator polynomials 
are estimated separately, have also been proposed [2, 30]. In these methods, the denominator is first estimated 

by minimizing an 'equation error' and then the numerator is found by minimizing a linearized 'fitting error' [2] 

or by setting the leading error samples to zeros [30]. A thorough coverage on filter design by modeling may be 

found in [7]. 

Equation error minimization is a commonly used optimization procedure for estimating AR-parameters. 
In fact, the well-known linear prediction (LP) coefficients [7-10] are estimated by minimizing equation errors. 
Linear predictors have extensive usefulness in speech analysis, synthesis and coding. Many practical and efficient 

algorithms are available for LP parameter estimation. Among these, the 'Autocorrelation Method' (AM) and 
the 'Covariance Method' (CM) are most popular. CM and AM do not produce optimal estimates in the sense 

that the model fitting error norm is not minimized in either case. In contrast, Steiglitz and McBride (SMM) had 
proposed a modified fitting error minimization criterion for estimating the coefficients of general ARMA models 

[3, 4, 7]. SMM has also been adapted for AR parameter estimation [7]. In absence of any exact model fitting error 
criterion, SMM has established itself as the standard method for AR and ARMA parameter estimation problems 

[3, 4, 7, 10, 12, 22, 25, 34, 40, 47]. In [5], a decoupled exact fitting error minimization approach has also been 
proposed by Evans and Fischl (EFM). But their algorithm is applicable only in the case of strictly proper ARMA 
models where the number of poles must be exactly one more than the number of zeros. Consequently, the optimal 

EFM can be applicable for identifying first-order AR-models only. The proposed optimal algorithm has no such 
restrictions. 

The proposed algorithm originates from a recently developed optimal method (OM) for general ARMA 
modeling [6]. Unlike EFM, the decoupled fitting error minimization approach in [6] is applicable for ARMA 
models with arbitrary numbers of poles and zeros. Furthermore, in contrast to the methods in [1-4, 24, 30], no 
linearization or modification of error criterion is introduced in the theoretical derivation of the least-squares model 

fitting criterion. In this Section, the complete derivation of the optimal solution for the AR case (OM-AR) is being 
presented for the first time. It is also shown that if the observation data is composed of true impulse response 
corrupted by Gaussianly distributed noise, then the proposed optimization produces the Maximum-Likelihood 
estimates (MLE) of the AR parameters. For other types of noise or deviations least-squares estimates (LSE) are 
found. 

A critical step in the theoretical derivation of the error criterion is to decouple the multidimensional criterion 
into a non-linear problem for the AR-parameters and a linear problem for the numerator coefficient. In the 
decoupled form, the fitting error is found to be related to an equation error which is different than the ones that 
appear in CM or AM. But the form of the equation error is shown to be mathematically appropriate for the AR 
case. The non-linear criterion possesses inherent matrix prefiltering structure which directly leads to formulating 
an efficient iterative computational algorithm for its minimization. Several simulation examples demonstrate the 
superior performance of the proposed approach when compared to some of the existing suboptimal methods. 

The Section is arranged as follows : in Subsection II, the problem is defined, the connection with MLE is 
established and some existing results are briefly outlined. In Subsection III the error criterion is theoretically 
derived for the AR case and the computational algorithm is presented. In Subsection IV, several simulation 
examples are given. Finally, in Subsection V, some concluding remarks are given. 

II. PROBLEM STATEMENT AND PREVIOUS RESULTS 

The z-domain transfer function for an auto-regressive model can be represented as, 

(Z> ~   l + d1z-
l + --- + dp_1z-(P-i) + dpz-P  = D(z)' { ' 
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where the coefficient of the z° term in the denominator has been assumed to be unity without any loss of generality. 

As an example, H(z) may represent the transfer function of human vocal tract which is commonly modeled as 

an all-pole model. The model order p is assumed to be known. In case of speech signals, for example, a lot 

of experience and knowledge is already available and the value of p = 10 or 8 is usually chosen. An equivalent 
representation of the transfer function H(z) can also be written in terms of its impulse response as, 

H{z) = h(0) + h{l)z~l + ...+ h(N- 2)z~<-N-V + h(N - I)*"**"1) + • • •. (2) 

The first TV significant samples of H(z) can be stacked in a vector form as, 

h A   [h(0)    h(l)    ■■■    h(N- l)f. (3) 

Next, the vector containing the N samples of the 'prescribed' or 'desired' impulse response data is denoted as, 

hP A [MO)    Ml)    •••    hP(N-l)]T. (4) 

The desired IR data vector may represent the impulse response of vocal tract. With these definitions, the problem 
addressed in this Section may be stated as follows : 

Given a desired impulse response hp, the goal is to obtain the optimal estimates of the model parameters 
«o and d by minimizing the following least-squares IR model-fitting criterion : 

where, (5) 

(5a) 

(56) 

(5c) 

The notation, < jjf?\ ("HO denotes the response of the system, jK^r when driven by an input sequence, 6(i). 

Clearly, the criterion in (5) attempts to minimize the squared error between the desired and the estimated IR and 
hence, it can be expected to produce more accurate model than some well-known AR modeling methods (outlined 

below) which only minimize 'equation errors'. The least-squares problem in (5) is known to be nonlinear in d and 
standard nonlinear optimization algorithms have been utilized before in [15, 25-29, 36]. It should be emphasized 
that if the given IR-vector hp is composed of the true IR-vector h and additive Gaussianly distributed noise 
or deviations then the minimization criterion in (5) is exactly equivalent to the maximization of the Likelihood 
criterion [see ref. 10, pp. 242-248]. Hence, for such a scenario the algorithm proposed in this Section produces the 
MLE of the AR-parameters. For all other types of noise and deviations the Least-Squares Estimates are found. 
It may also be noted that the MLE result in [10] is primarily based on the works in [5, 13, 44] where only the 
strictly proper ARMA case was considered. The MLE for transfer functions with arbitrary number of poles and 
zeros has been presented recently in [6]. 

In many applications, such as in linear prediction of speech signals [4, 8], only the estimation of the AR- 
parameters is of primary concern. The two most commonly used LP algorithms, AM and CM, do not solve the 
ideal problem stated in (5) whereas SMM attempts to solve the ideal problem by appropriate modification of the 
criterion in (5).. These three approaches are briefly summarized next. 
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Covariance Method [CM] 

The ^2-norm of the following equation error is minimized [7-10] : 

hP(p) hP(p-l)     ••• hp(0) 

Jip(N-l)    hP(N-2)    •••    hP(N-p-l)_ 

or, 

1 1 
di 

= e CM 
eq    ' 

.dp 

HCMd A eCM 

(6a) 

CMO. ^A eeq   . (66) 

Note that HCM is filled with available IR data only and hence e^q
M may be considered an 'exact' equation error. 

Auto-correlation Method [AM] 

In this case, the ^2-norm of the following equation error is minimized [7-10] : 

Mo) 
Mi) 

o 
MO) 

hP(p) hP(p - 1) 

hP(N - 1)    hP(N - 2) 
0 hp(N-l) 

0 
0 

MO) 

M^-p-i) 
M^-P-2) 

M# -1) 
or, 

1 
di 

.dp 

■'eq    > (7a) 

HAMd A efq
M. (7b) 

The zeros in the upper and lower triangles of HAM are not part of the prescribed IR-vector hp and hence efg
M 

is not an exact equation error. 

It can be observed from (6) and (7) that the equation error for CM uses windowed data without making 
any prior assumptions about the data outside the observed window {hp(0) ... hp(N — 1)}. On the other hand, 
AM uses unwindowed data but sets the data outside the observation frame to zero. Because of this reason, AM 
usually produces less accurate estimates than CM. But it should also be noted that even though efq

M is not an 
exact equation error, one of the significant advantages of using AM is that the computationally efficient Levinson- 
Recursion algorithm can be utilized. In case of CM, a somewhat less efficient algorithm, Cholesky decomposition 
can be used [7-10]. Furthermore, the AR coefficients obtained by minimizing the norm of efq

M produce a stable 

transfer function. 

Steiglitz-McBride Method [SMM] 

This method was originally developed for general ARMA parameter identification but it has also been adapted 
for AR parameter identification. For the AR case, the following modified fitting error criterion is optimized [7], 

minV[(3^lM0- l^-Ui)}2- "°'d^ [
\D{Z)J   

PK>       \D{Z)}   
WJ 

(8) 

The estimate D(z) obtained at any iteration step is used as a prefilter for obtaining the updated estimates at the 
succeeding iteration. Equation (8) closely approximates the criterion in (5) and both are identical if D(z) = D(z). 
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But the advantage of using (8) is that the unknown parameters in d and no can be estimated by solving a set of 
simultaneous linear equations. It may be noted here that in [7], the numerator coefficient no had been assumed 

to be unity but, in general, that may not be the case. The derivation of the proposed fitting error optimization 
scheme is in order. 

III. PROBLEM FORMULATION AND ALGORITHM DEVELOPMENT 

In this Subsection, the multidimensional optimization problem in (5) is decoupled into a linear estimation 

problem for no and a non-linear optimization problem for d.   Let Hd{z) be the inverse filter corresponding to 
D(z), i.e., 

D(z)Hd(z) = 1.                                                                           (9) 

In time domain, this corresponds to a convolution operation where the aVs are finite and the /i<j(n)'s are infinite 

in extent. The first N significant terms of this convolution operation may be expressed in matrix notation as, 

DHd = I,v                                                                             (10) 

where, Iff denotes an N x N identity matrix, 

■1     o        o   o- 
rfi     1          0    0 

D A 
dp    dp-i    ■ ■ ■     1     • • •    0 

. 0      •••     dp         1. 

E JRNxN         and                                   (11a) 

-   MO)          o       •••    o-i 
Mi)        Mo)     •••     o 

Hd A em"*"                           (116) 
hd{N-l)   hd(N-2)    ■■■   M0) 

Using (9), the expression in (1) can be rewritten as, 

H(z) = ^y A n0Hd(z).                                                               (12) 

Equating the first N coefficients of equal powers of 2_1 in both sides of (12) and using vector notation, 

h A n0hd,                                                                             (13) 

where, hd is also the first column of Hj defined in (lib), i.e., 

hd A [MO) Mi) ••• hd(N-i)f.                                     (14) 

With these definitions, the problem stated in (5) can be rephrased as, 

min||e||2 A  min||hp - nohd||2,                                                              (15) 
no,d              =   no,d 

where, the error vector is defined as, 

eAhp- n0hd.                                                                      (16) 
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It is clear from (16) that the error e is linearly related to n0 whereas e is non-linearly related to d through the 

vector hj. In this form, it is apparent that the present problem belongs to a class of mixed optimization problems 
where the linear and nonlinear variables appear separately. This class of problems has been studied extensively 
by numerical analysts [18-21]. In their work, the main objective had been to optimize the two sets of variables 

independently. Their argument goes as follows. If h^ (i.e., d) is known, then n0 can be optimally estimated by 
the minimization of the criterion in (15) and the resulting least-squares estimate will be given by, 

n0 A h*hP, (17) 

where # denotes pseudo-inverse operation defined as, hf A (hjhd)_1hj. In practice, d will not be known and 
it has to be estimated. Plugging n0 back in (15), the optimization criterion for d can be found as, 

n0hd||2   =   mjn||hp - (hdh^)hp||2 min||hp 
r»o,d 

min||hp 
d 

=  min 11(1* - Phjhp||2, 
a 

(18a) 

(186) 

where Phd denotes projection matrix defined as, Phd A hd(hjhd)_1hj. For a larger class of multidimensional 

nonlinear optimization problems, it has been proved in Theorem 2.1 of [18] that if d is estimated by minimizing 
the criterion in (18) and if that estimate is utilized for computing h0 using (17), then the resulting estimates 
are the unique and global minimizers of the criterion in (15). Hence, the original optimization problem in (5) 

is identical to the decoupled estimators in (17) and (18). This type of decoupled optimization of linear and 
non-linear subproblems had been utilized before in [5, 13, 45, 46] for strictly proper ARMA case and in [6] for 
the general ARMA case. The derivation for the AR case, as given here, appears to be new. 

The AR-parameters in d are related to the error criterion in a complicated manner through Ph,,. Hence, the 
direct optimization of (18) w.r.t. d would require taking resort to standard non-linear optimization techniques 
such as Newton-Raphson or Gauss-Newton methods. Instead, following the strategy used in [6] for the general 

ARMA case, the criterion in (18) is reparameterized by relating it directly to the coefficients in d. Appropriate 
partitioning of the matrices D and H^ gives, 

1 0              0        0 1 

D A 

di 

dp     dp-i 

0        0 

L  0 

dT 

and (19a) 

Hd A 

MO) 
Mi) 

0 

Mo) 

M^V-l)    I    hd(N-2)    •■•    MO) 

hd i Hd (196) 

Using these notations, the expression in (10) can be rewritten as, 

BT 

<hd 

BThd 

hd : H',, 

«W 
BTH' 

=   IjV, 

0 _U(/V-1)X1 

Olx(JV-l) 

l(JV-l) 

(19c) 

(19d) 
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The bottom-left corner element shows that the TV x (N - 1) matrix B and the vector hd are orthogonal, i.e., 
BTh<j = 0. Also by construction, 

rank(B) + rank(hd) = N. (20) 

Hence, using a theorem on projection matrices [39], 

PB + Ph, IN- (21) 

Using this relationship in (18b), the following equivalent forms of reparameterized optimization criterion are 
obtained, 

min||(Ijv - Phjhp||2 =  min||PBhp| 

=  min||B(BTB)-1BThP| 
d 

=  min||B(BTB)-1ee?||
2

> 

mine eq (B
TB) ■*eq> 

where, eeq is an equation error defined as, 

This equation error can also be rewritten as, 

Mi) 

ee, A BThP. 

(22a) 

(226) 

(22c) 

(22d) 

(23) 

^eq = BThP 

fcp(O) 

hP(N - 1)    hp(N - 2) 

A HU*«!. 

hp(N-p-l) 

1 r 1 

.   \-d„ 

(24a) 

(246) 

A few observations may be made here regarding the equation error defined in (23). Clearly, eeq differs from the 
equation errors used in CM and AM as defined in (6) and (7), respectively. The equation errors in those cases 
were formed in somewhat ad hoc manner on the basis of two types of autocorrelation estimates [7, 9, 10]. On 
the other hand, the particular form of equation error in (24a) resulted from purely mathematical consequences 
of the AR case under consideration. In particular, if the prescribed response hp happens to be an exact impulse 
response of a p-th order AR transfer function, then the equation error in (24a) will be identically equal to zero, 
but the same will not be true for efq

M in (7). The equation error for CM appearing in (6) will also be zero but 
efg

M ignores the information contained in the upper (p — 1) equations of (24a). From this discussion, it can be 

concluded that more accurate estimates may be obtained if the equation error in (23) is used for the AR case. 
Minimization of this equation error will be utilized later in the computational algorithm for obtaining the initial 
estimate of d. 

Using (24b) in (22d), the reparameterized criterion can be expressed in the following useful form, 

mindTH^(BTB)-1H^fld. (25) 

According to Theorem 2.1 of [18], the denominator vector d causing the minimum of the criterion in (25) is the 
desired optimum d°. The minimized error can then be found from, 

:   PB°hP, 
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where, B° is constructed by using the optimum d°. The optimum estimate of the impulse response is then, 

h° = hP - e°. (27) 

From [18], it can be also be inferred that if h^ is formed using d° then the optimal n^ can be obtained using (17) 
as, 

n° A h°/hp. (28a) 

Next it is shown that instead of using (28a), the optimal numerator coefficient can be found in a more straight- 

forward manner as, 

n°0 = A°(0), (286) 

where h°(0) is the first sample of h°, the optimal impulse response estimate found in (27). In order to demonstrate 
this equivalence, equation (28b) is rewritten as, 

n°0 = hfd°, (29a) 

where, 

hj A [h°(0) 0  • • •  Of. (296) 

Note that the first term in d is always 1. Using the partitioning notation in (19a), equation (29a) can also be 
rewritten as, 

< = dlh°, (30a) 

= dJ(hP - e°), using (27), (306) 

= dl(hP - hP + h°dh°d*hp), using (18a) and (26) (30c) 

= (dlh°d)h°*hp, (30d) 

= K*kp, (30c) 

where, the last equality uses the fact that, d„h°d = 1, which appears in the upper-left partition of (19c). This 

completes the proof of equivalence between the expressions in (28a) and (28b). It should be noted that (29) may 
be preferable over (28a) for computing no because the computation of h^ and the pseudo-inverse solution required 
in (28a) can be avoided, whereas calculation of the optimal h" in (27) may be a necessary step. Equations (22) and 
(29) are the two desired decoupled formulae for estimation of the coefficients of the denominator and numerator 
polynomials of the AR-model. It should be mentioned that unlike the decoupled forms of SMM given in [7] and 
[34], no approximations were introduced in deriving the decoupled estimators in (22) and (29). A computational 
algorithm for minimization of the criterion in (22) is outlined next. 

Computational Algorithm 

The criterion in (22) is non-linear in d and hence it can not be minimized directly. Standard gradient-based 
non-linear optimization techniques such as Newton-Raphson or Gauss-Newton algorithms could be used. But 
these algorithms utilize only the first few terms of Taylor series and are known to be highly sensitive to the choice 
of the initial estimates. But it can be observed from (25) that the error criterion possesses a good deal of matrix 
structure. Specifically, the expression appears to be a weighted quadratic criterion in d, except that the weight 
matrix (BTB)_1 itself is dependent on the unknowns in d. This inherent mathematical structure of the criterion 
will be utilized to develop an iterative computational algorithm. The algorithm is similar to the ones for ARMA 

cases appearing in [5, 6, 13]. Here the complete derivation for the AR case will be given. 
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In order to initiate the iterative algorithm, d is first estimated by minimizing the ^2-norm of the equation 

error eeq defined in (24a). Partitioning HAR, the equation error eeq can be rewritten as follows, 

eeq = BThP A 

Mi)     I     MO)     ••• o 

M^-l)    I    hp(N-2)    ■■■    hp(N-p-l) 

1 

g : G d. 

(31a) 

(316) 

Minimizing ||ee?||
2 w.r.t. d, the following initial estimate is obtained 

d<°> = 
1 

_G#g 
(32) 

This estimate will be utilized for initiating the iterative computational algorithm.  The final form of the error 
vector in (22a) is rewritten as, 

e = B(BTB)-1BThP 

A WBThP using (24), 

= WHMd using (31b), 

W g i G 

= Wg + WGd, 

where, 

W A B(B-'B Tn\-l 

(33a) 

(336) 

(33c) 

(33d) 

(33c) 

(33/) 

(33<?) d A   [d!    d2    •••    dp]1 . 

If the matrix W is treated as independent of d, minimization of ||e||2 w.r.t. d results in the following estimate : 

d =   -(WG)#Wg 

=   - (GTWTWG)_1GTWTWg. (34) 

But W does have dependence on the elements in d and hence the estimate in (34) can only be computed iteratively. 
The estimate of d found in the i-th iteration step is used in (33f) to form W^ which is then utilized at the 
(i + l)-th step of iteration to compute d*+1 as follows : 

d('+i) 

-[X(!')G]-1[X(i)]g 

where, 

XC0 A GTWTWW« 

= GT(BT(0BW)-1. 

(35a) 

(356) 

(35c) 
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The iterations are continued until ||dj+i — dj||2 < 6, where 8 is an arbitrarily small number. 

It must be noted here that the iterations in (35) may not always converge to the absolute minimum of 
the error criterion in (5) and hence the estimated d may not be the optimum one. This is because in (35) the 

variability of W w.r.t. d has been ignored while minimizing ||e||2. To achieve the optimum, the gradient of the 

complete expression of ||e||2 must be set to zero. If desired, this may be done in a second phase of the algorithm 

which is outlined in the Appendix. Invoking Phase-2 will assure that at least a local minimum will be achieved. 

But it may be noted here that the simulation studies indicate that the Phase-1 of iterations using (35) does 

an excellent job of bringing the estimate very close to the optimum. It will be shown in Subsection IV that 

the Phase-2, if invoked, causes almost insignificant changes in the d vector and the minimized error norm. In 
simulations, the convergence was found to be quite rapid in both the phases. Once the estimates of d converge, 

no is found using (26), (27) and (29), in sequence. 

Discussion 

The major computational burden of the algorithm is in performing the iterative refinement in (35), where, 

at each iteration step an (N - I) x (N — 1) matrix (BTB) needs to be inverted. But (BTB) is a banded and 
symmetric matrix which can be inverted using computationally efficient Cholesky decomposition [8, 10]. Further 

reduction in computation is also possible because though (BTB) is not purely Toeplitz, a major (N —p)x (N —p) 

diagonal block is symmetric-banded-Toeplitz and this block can be inverted with 0[(N — p) log(7V — p)] + 0\p2] 
operations [23]. The other (p — 1) x (p — 1) diagonal block is symmetric and can be inverted with 0[(p — l)2] 
operations. Furthermore, the non-diagonal blocks contain mostly zero elements. Hence, using the block matrix 
inversion formula due to Schur [48], this matrix inversion can be computed with less than 0[(N — l)2] operations. 
It may also be noted that in case of SMM the calculation of IR of the inverse filter and data filtering are required 
at every step of iteration, whereas the proposed method uses the estimated d directly to form the B matrix. 

The LS error criterion defined in (5) attempts to match only the first N available samples of hp (n). No explicit 
assumption has been made about the unobserved samples, but the estimated rational transfer function essentially 
extends the impulse response beyond the observations. It may be noted here that minimum phase property can 
not be guaranteed with the AR-parameter estimates produced by the proposed algorithm. Extensive simulation 
studies indicate though that with converging IR sequences, the algorithms always produced stable solutions. It 
should also be pointed out that among existing methods, only the autocorrelation method can guarantee stable 
solutions. But AM uses windowed data and the IR fit with the estimates is usually not very accurate because the 
original least-squares IR error criterion is not minimized. To ensure minimum phase solution, AM can be used 
(instead of (32)) to obtain the initial estimates for starting the iterative AR-algorithm. If the estimates obtained 
from the iterative scheme becomes maximum phase at any iteration step of the AR-algorithm, the iterations can 
be terminated at that stage. The estimate found at the preceding iteration should be accepted as the best possible 
minimum phase solution that minimizes the optimal LS criterion in (5). 

The model order selection problem has not been addressed in this work. It appears that for this essentially 

deterministic problem, Akaike Information Criterion (AIC) or Minimum Description Length Criterion (MDL) 
may not be applicable. But these criteria may be utilized when the prescribed impulse response data consists of 

true impulse response embedded in Gaussianly distributed noise. 

The algorithm presented in this Section may also be quite useful for estimating MA filter coefficients. 
Presently, the most effective algorithm for MA modeling is Durbin's method [11] which, in fact, relies on two 
steps of AR parameter estimation. Traditionally, AM is utilized in both steps of Durbin's method because it 
produces minimum-phase polynomials [7, 9-11]. But the estimates obtained using AM may not be optimal be- 
cause the true impulse response fitting error norm is not minimized. But the algorithm presented here produces 
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optimal least-squares AR filter coefficients from prescribed impulse response data. Hence, it can be expected that 

the introduction of the proposed AR algorithm in one or both stages of Durbin's algorithm may produce more 
accurate MA parameter estimates. 

It has been shown in [7] that the original SMM can also be decoupled into a linear and a non-linear subprob- 

lems. In a recent paper [34], the strictly proper case of the original SMM has been decoupled somewhat differently 
than in [7]. But more interestingly, it has also been demonstrated that the non-linear part of the decoupled SM 

criterion has exact mathematical equivalence with the optimal EFM criterion in [5]. It appears that using the 
new definitions of the matrices resulting from the matrix partitioning in (19), the AR-version of SMM as given 
in (8) can also be decoupled into linear and nonlinear subproblems. This equivalence may have an important 

consequence for the proposed algorithm. There already exists a convergence analysis of the original SM method 

in [47]. It can be hoped that the convergence analysis will also apply to the decoupled form of SM method given 
in [34]. If that happens to be the case, as alluded to in [34], the convergence analysis in [47] should also apply to 

the iterative computational algorithm presented in this work. It should be noted though that the results of SMM 
and the proposed optimal method may not be identical. Specifically, the numerator in the decoupled form of [34] 
is computed somewhat differently than (26) which is the optimal estimate. Furthermore, it should be also added 
that the iterative scheme in (35a) is not the only possible approach for iterative minimization of the equivalent 

criterion in (22). In fact, removing the requirement of do = 1, the eigenvector corresponding to the minimum 
eigenvalue of the matrix H^H(BT TS('})~

1
HAR may also be used as d(,+1), the estimate at the (i + l)-th iteration 

step [50]. This possibility is not obvious from the original SMM algorithm in [3]. 

IV. SIMULATION RESULTS 

In this Subsection, the performance of the proposed algorithm is evaluated by means of several AR(p) model 
identification examples with different p values. S = 10~6 was used as the stopping criterion in both phases of the 
algorithm for all the examples below. The fitting-error norm defined in (5) was calculated at convergence using 
the estimated parameters and the results are tabulated in the 'Minimized Error Norm' column. Furthermore, in 
order to get a relative sense of performance, the logarithm of the ratios of the powers of the 'true IR' (known in 
these simulations) and the error powers are also tabulated in the 'Closeness in dB' columns. 

Simulation 1 : 

The desired impulse response has a Triangular form as shown by the solid lines in Fig. 1A - ID. The 
resulting impulse response fit using Covariance method and Auto-correlation method are shown as connected 
circles in Figures 1A and IB, respectively. The impulse response match at the end of each of the two phases 
of the algorithm described in Subsection III with p — 4 are shown in Fig. 1C and Fig. ID, respectively. The 
minimized error norm and the closeness of the fit to the desired signal hj> are listed in Table 1. The number of 
iterations for convergence are also listed. It can be seen from the table and the figures that compared to AM 
and CM, the proposed scheme provided more accurate estimates. But it may also be observed that there is no 
significant difference in the results between the 1st and the 2nd phase of the proposed algorithm. 

110 



Table 1: Example 1: Comparison of three methods with Triangular Impulse Response 

Method Closeness Minimized Number of 
in dB Error Norm Iterations 

Covariance 6.359 154.9 

Auto-Correlation 6.674 144.093 

Proposed 23.436 3.037 5 
Phase-1 

Proposed 23.439 3.035 3 
Phase-2 

Simulation 2 : 

An arbitrary impulse response was generated with p = 5 for these simulations. If the algorithm in Subsection 
III is used directly to match the true response it will give perfect results. Instead, Gaussianly distributed white 
noise was added to the true response to obtain the desired response hp. Hence, the estimates obtained with the 

proposed algorithm will also be the MLE of the unknowns. For 20dB noise, the true and the desired responses 

are shown in Fig. 2A. The impulse response match using Covariance method and Autocorrelation method are 
shown in Figures 2B and 2C, respectively. The initial estimate obtained by minimizing the equation error in 
(24a) is shown in Fig. 2D. The impulse response fit obtained using the proposed algorithm at the end of Phase-1 
and Phase-2 are shown in Fig. 2E and Fig. 2F, respectively. The minimized error norms and the closeness to the 
true response are listed in Table 2. It can be observed for this example that there is about 3dB difference in the 
impulse response fit between the two phases though the difference in the minimized error norms is quite small. 
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Table 2 : Example 2 : Comparison of three methods with 5-th order Impulse Response 

Method Closeness 
in dB 

Minimized 
Error Norm 

Number of 
Iterations 

Covariance 1.027 1.847 

Auto-Correlation 12.442 0.691 

Equation Error 
in (24a) 

15.459 0.656 

Proposed 
Phase-1 

17.889 0.646 5 

Proposed 
Phase-2 

20.883 0.634 4 

From these simulation results a fair conclusion may be drawn that the Phase-1 of the algorithm does an 
excellent job of error minimization. Hence, the Phase-2 of the algorithm need not be invoked for most applications. 
The results using SMM are close to the results at the end of Phase-1 if the original SMM [3] or the decoupled 

form in [34] are used. There were some numerical differences in the coefficients but the impulse response fit looked 

almost alike. The results with the AR-version of SMM given in [7] were poorer than Phase-1 results because the 
numerator coefficient is set to 1 in [7]. Extensive simulations with other examples show equivalent performance. 
Interestingly, the simulations also indicate that the proposed algorithm is quite immune to the choice of initial 
estimates. In fact, when CM or AM were used in place of (32) for obtaining the initial estimates, the results 
obtained at the end of Phase-1 or Phase-2 turned out to be exactly identical to the results listed in the Tables. But 
with Covariance method as initial estimate, the Phase-1 sometimes took one or two extra iterations to converge. 
This important observation indicates the robustness of the proposed algorithm to the choice of initial estimates. 

V. CONCLUDING REMARKS 

In this Section, a classical rational model identification problem has been addressed. The major focus was 
to develop an algorithm for optimal estimation of the parameters of an all-pole transfer function with arbitrary 
number of poles by model-fitting a prescribed impulse response. Unlike some existing results, no linearization 
or approximation has been done while deriving the theoretical optimization criterion. It is shown that the 
multidimensional non-linear problem can be decoupled into two smaller problems of which one is a linear problem 
and the other one is a non-linear problem. The inherent mathematical structure of the non-linear part is utilized 
to formulate an efficient iterative computational algorithm for estimating the denominator parameters. Global 
optimality properties of the estimators have been confirmed by relating the multidimensional optimization problem 
to certain well-known results in numerical analysis. In simulation studies also, the method has been shown to 
be highly effective. Regarding possible future work, it may be noted that most of the existing suboptimal 1-D 
algorithms have been extended for estimating 2-D filter coefficients from 2-D spatial domain data [22, 29, 35, 

36, 40-43]. The possibility of formulating an optimal 2-D AR-filter design technique by extending the proposed 
method is being studied [49].   Extension of this work for identification of Multidimensional AR-systems from 
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multidimensional impulse response data [38] is also under progress. 
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APPENDIX  Computational Algorithm : Phase II 

The second phase of the iterative algorithm is described in this Appendix. In this phase, the derivative of the 
matrix W w.r.t. b is taken into consideration while minimizing the fitting error norm. The complete expression 
of the ^2-norm of the error can be written as, 

\\e\\l = eTe = (Wg + WGd)T(Wg + WGd). (Al) 

By setting the derivative of this squared norm to zero, the updated b^+1^ at the (i + l)-th iteration is given by, 

D(*'+1) =   - [uWGj-^uWjg (A2) 

where (suppressing the superscript W), 

U A LTW + GTWTW, (A2a) 

T A \dw aw     l /A ,N L £ [w^<   ■ ■ ■ M;^ \' (A26) 
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B + B1 dB 
ddk 

TTJ\-1 (BJB and (A.2c) 

4j- has the same form as the B matrix defined in (19a) but filled with all zeros except at the locations where <4 

appear. For example, 

8B 
ddv 

Once t>(,+1) is found, t>(,+1) can be formed as, 

b^1) = 

■o   • 
0    • 

• •  1 
••   0 

0    •• 
1  •• 

•  o- 
•   0 

0    ' 
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•    0 
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em NxN-l 

1 

b(«+i) 

.[UOGj-'tU^g 

(A.2d) 

(A3a) 

(A36) 

This minimization phase continues until b'+1 ~ b' is reached and this optimum b° vector corresponds to a 

minimum of the error surface of ||^|12- 
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Section - 3.4 :  DESIGN OF DENOMINATOR-SEPARABLE 2-D IIR FILTERS 

SUMMARY 

Optimal design of an important class of two-dimensional (2-D) digital IIR filters from spatial impulse response 

data is addressed. The denominator of the desired 2-D filter is assumed to be separable into two 1-D factors. 
The filter coefficients are estimated by minimizing the ^-norm of the error between the prescribed and the 
estimated spatial domain responses. The denominator and numerator estimation problems are theoretically 
decoupled into separate problems. The decoupled criteria have reduced dimensionality. The denominator criterion 

is simultaneously optimized w.r.t. the coefficients in both dimensions using an iterative algorithm. The numerator 

coefficients are found in a straight-forward manner. If the desired response is known to be symmetric, the 
proposed algorithm can be constrained to produce optimal denominators which are identical in both domains. 
The performance of the algorithm is demonstrated with simulation examples. 

I. Introduction 

Two-Dimensional IIR filters are commonly used in image processing and 2-D filtering. Synthesis of such 
filters from prescribed spatial domain impulse response data is an important and challenging design problem and 

has received considerable attention in recent literature [1, 2, 4, 5, 8, 12, 14, 16]. Spatial-domain design of 2-D 
IIR filters is analogous to 1-D recursive filter design based on time-domain specifications. Most 2-D filter design 
algorithms are basically extensions of existing 1-D algorithms. In particular, Shanks et al [12] had extended the 
work of Shanks [11]; Cadzow [1] and Shaw and Mersereau [16] utilized many of the general non-linear optimization 
methods; and Shaw and Mersereau [16] also extended the work of Steiglitz and McBride [17]. The 1-D work of 
Mullis and Roberts [7] was further extended and applied to the 2-D case in [5]. 

The approaches noted above do not minimize the true spatial impulse response error, though it may be 
mentioned that the extension of Steiglitz-McBride method in [16] closely approximates the true fitting error. For 
the strictly-proper case, i.e., when the numerator order is one less than that of the denominator, Evans and Fischl 
(EFM) had proposed an optimal method for synthesis of 1-D IIR filters [3]. The 2-D filter synthesis algorithm 

presented here is a generalization of EFM to 2-D. Proposed solution is optimal in the sense that it minimizes true 
and complete spatial error criterion for the design of strictly-proper 2-D IIR filters. 

EFM has been found to be highly accurate for 1-D filter design. A modified complex version of the EFM 
with certain symmetry constraints has also been shown to be effective for maximum-likelihood 1-D and 2-D 
frequency-wavenumber estimation [ 8, 13, 15]. Generalization of EFM for strictly-proper 2-D filter design has also 
been considered previously [4, 5], but it appears that the full potential of EFM has not been utilized in the 2-D 
case. Specifically, it will be shown that the complete error criterion encompassing the entire subspace orthogonal 
to the model fitting error was not optimized in [4, 5]. Instead, two suboptimal error criteria were formed in each 
domain and the filter coefficients were optimized in the two dimensions independently. 

In this Section, a 2-D version of EFM is developed for optimal design of 2-D recursive filters from prescribed 
spatial domain data. The complete basis space orthogonal to the spatial fitting error will be identified and the 
corresponding error criterion will be shown to be dependent only on the 2-D filter parameters. Similar to 1-D 
EFM, the non-linear error criterion will be decoupled into a purely linear and a non-linear sub-problem. For 
the separable denominator case, it is also shown that the error vector possesses a quasi-linear relationship with 
the denominator coefficients in both domains simultaneously. Unlike several existing 2-D methods [1, 3, 4, 5], 

the exact fitting error is minimized w.r.t. the filter coefficients in both dimensions simultaneously. Simultaneous 
optimization is particularly effective for synthesizing 2-D filters with symmetric impulse response which are quite 
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common in practice. In such cases, the criterion can be constrained to produce identical denominators in both 
domains ensuring symmetry in the estimated spatial response. 

The Section is arranged as follows : In Subsection II, the least-squares problem is stated. In Subsection III, 
the preliminaries for the non-separable numerator and separable denominator case is given. In Subsection IV, 

the new orthogonal basis spaces are defined, the error criterion is derived and the computational algorithm is 
summarized. In Subsection V, some simulation results are given and finally, in Subsection VI some concluding 
remarks along with directions for future work are included. 

II. Problem Statement and Formulation 

In general, a 2-D rational function H{z\,z2), with non-decomposable numerator and denominator is described as 

Q(*l,*2)   _   E£oE?=Qg(U)*r*2"" -*„-} 

H(zuz2) = 
n*uz2)   Er=oEr=>(uKsv' (i) 

Note that for the strictly-proper case of EFM, n-\_ = mi — 1 and n2 = «2 — 1- If the ki x k2 first quadrant samples 
are assumed to be significant, H(z\, z2) can also be written as, 

H(z1,z2) = zfHz2 

rtiere, Zl  A [1 zf1 • • .z1
_(*1_1)]T, z2 A [1 z^1 ■ • .*-(fca-1)]T and 

(2) 

H A 

fc(0,0) 
Ä(1,0) 

A(0,1) 

Mi, i) 

.A(jfei-1,0)    h(fci-l,l) 

Define a vector by stacking the columns H as follows : 

Ä(0,*2-l) 
Ä(l,*2-1) 

ÄObi-l.fc-l) 

(3) 

h A 
h2 

hfc. 

(4) 

where, h,- denotes the ith column of H. Next, let the prescribed space-domain impulse response matrix be denoted 

as, 

X A 

z(0,0) 
1(1,0) 

«(0,1) 
z(M) 

.i(Jbi-l.O)    as(*n — 1,1) 
A   [xi x2 • • • XjfeJ 

*(0,A2-1) 
ar(l,*2-l) 

x(ki -l,k2 — 1) 

and the corresponding vector be formed as, 

x2 

Xfc2 

In this Section, the following 2-D least-squares synthesis problem is addressed : 
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Given the 2-D spatial impulse response matrix X, estimate p and q by optimizing the following error criterion, 

min||e||2 A ||x 
q,p = 

h||2   with, p(0,0) = 1,    where, 

q A  fo(0,0) «(0,1) 

p A [p(0,0)p(0,l) 

q(ni,n2)]T        and 

p(mi,m2)]T 

(7a) 

(76) 

(7c) 

This problem is nonlinear in p and standard gradient-based optimization algorithms have been used for 1-D as 

well as for 2-D designs [1, 2, 16]. But these generic algorithms do not make effective use of the matrix-structures 
inherent in this particular problem and they are known to be sensitive to initialization. Several sub-optimal 
algorithms based on linearization of the true non-linear criterion have also been proposed [2, 11, 16, 17]. In this 

work, the exact fitting criterion defined in (7) will be theoretically decoupled into a purely linear problem for q 

and a non-linear problem for p. Furthermore, the non-linear criterion will be shown to possess a quasi-linear 
relationship to the unknown denominator coefficients. This will lead to the formulation of an iterative algorithm 

for its minimization. 

III. Design With Separable Denominator and Non-Separable Numerator 

In this case, the 2-D rational transfer function can be written as, 

u'2)   Er=o^r'Er=o^>2-J' 
(8a) 

Define, 

c A [e(0) c(l)   ...c(mi)]T 

d A [d(0) d(l)   ...d(m2)]T. 

and (86) 

(8c) 

Multiplying both sides of (8a) by E£Lo c(0zi' J2T=o d(j)z2 
J aQd equating the coefficients of the same powers of 

z-1 [5], 

C A 

[D? ® Q[]h = q 

[D[ <g> CT]h = 0 

[DT <g> Cf ]h = 0 

[DT ® CT]h = 0 

[Ik2 ® CT]h = 0 

[DT ® Ifcl]h = 0 

c(mi) 0 
c(mi — 1)    c(mi) 

c(0) 
0 

c(l) 
c(0) 

0 

where, 

c(mi) 
c(m\ — 1) 

c(0) 

(9a) 

(96) 

(9c) 

(9rf) 

(9c) 

(9/) 

eiR ^i x(fci-mi) (10a) 
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D A 

d(m2) 0 
d(m2 - 1)    d(m2) 

d(0) 
0 

d(l) 

d(0) 

0 

Ci A 

c(0)    c(l) 
0      c(0) 

Di A 

d(0)   d(l) 
0      d(0) 

0 
0 

L   0 

0 
0 

d(m2) 
d(m2 — 1) 

d(0) 

c(mi — 1) 
c(mi - 2) 

c(0) 
0 

0 

d(m2 — 1) 
d(m2 - 2) 

d(0) 
0 

0 

€IR ljX(l!2- m2) (106) 

€IR fcl Wi (10c) 

em. k2xm2 (lOd) 

where, 1^ G JR.*1**1 and Ita G IRfc2><*2 are identity matrices and <g> denotes the Kronecker product [9]. If h, c 
and d are known, the numerator vector q can be calculated using (9a). But in practice, h, c and d need to be 
estimated from the prescribed response x. If h is replaced by the prescribed x in (9b)-(9f), the right hand sides 
will not be equal to zero. Instead, it will result in the following equation errors : 

[D[ ® CT]x =[Df ® CT][h+ e] = [Df ® CT]e A e\t (11a) 

(116) 

(lie) 

(lid) 

(lie) 

In (lla)-(lle), the fact that x = h + e and the orthogonal relationships in (9b)-(9f) have been utilized. These 
equations show the relationships between the fitting error e and equation errors. As in case of 1-D EFM [7], in 

order to minimize ||e||2 an inverse relationship of the form, 

e = W(c,d)e 

[DT <g)Cf]x =[D7 ®Cf][h + e] = = [D' * ® Cj]e A < 

[DT ®CT]x =[D7 ®CT][h+e] = = Pa " ® CT]e A e3 

[I*2 
<8>CT]x =P*a ®CT][h + e] = = ?*, ®CT]e A t, 

[Da " ® /*Jx =[D7 ®/tl][h + e] = = [DT ® JfcJe A e5 

eg (12) 

need to be found. The matrix, W(c, d) needs to be constructed using c and d. 

The problem of determining the denominator coefficient vectors c and d is essentially equivalent to the 

search for (kik2 
_ mim2) linearly independent vectors orthogonal to h. These orthogonal basis space must be 

dependent on the elements in c and d only. Equation (9a) clearly shows that Di <g> Ci G k\k2 x mim2 can not be 

orthogonal to h. On the other hand, (9b)-(9f) demonstrate that the matrices Di®C, D®Ci, D®C, Ijt2®C and 
DT ® hx are indeed all orthogonal to h. But summing the respective number of columns of these five full-rank 
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matrices, the total turns out to be (3&ifc2 — mim^ — kim,2 — k^rni) vectors of length &i&2 each. Hence, these set 
of matrices can not all be linearly independent of each other. In [5], the matrices, Di <g> C, D ® Ci, D ® C, as 

formed in (9b)-(9d), respectively, were utilized to form an inverse relationship as required by (12). These set of 

matrices do contain (k\k2 — mim2) linearly independent vectors of length fci&2, but unfortunately, they are not 

orthogonal to each other. 

It may be noted here that, in a previous 2-D generalization of EFM [4], the complete spatial fitting error 
criterion was not formulated. In a later work, it was partially formulated in equation (14) of [5], but no algorithm 

was presented for minimizing that criterion with respect to the unknown parameters. Instead, in both those 
works, two separate criteria were minimized independently. Specifically, (9e) and (9f) were used in [4, 5] to 

estimate c and d using two independent optimizations. But Ifc2 <g> C and D <g> J^ contain (&i&2 — &2mi) and 
{k\ki — m-iki) linearly independent vectors, respectively. The entire (&i&2 — mi^) dimensional vector-space 
orthogonal to h was not optimized simultaneously w.r.t c and d. It is not apparent if the optima of these separate 

criteria are identical to those of the true 2-D criterion. In Subsection IV, a new set of orthogonal vectors will be 

constructed which will lead to the formulation of an exact 2-D spatial fitting error criterion that can be optimized 

simultaneously w.r.t. c and d. 

IV. Formulation of the Orthogonal Basis Space : 

According to orthogonality principle [15], the fitting error e, at minimum, ought to be orthogonal to the 
'estimated' h that minimizes the error. It is also desirable to have the resulting error criterion dependent on the 
denominator coefficients only. To meet these requirements two Vandermonde matrices are formed as follows, 

T A t\ 

,*,-! 

t2 
and Q A 

"   1 1    " 
9i ••        9m2 

>"*    . 0*3-1 

(13) 

where, U = e;w';wj,i = l,...,mi and qt = e^e';9i,i — l,...,m2 be the roots of the polynomials C(z\) 

YT=o c(i)zi' and D{zi) = YA=O^)
Z

2
%

 ^ respectively. Hence, by construction, 

0^ = 0 

DTQ = 0 

and (14a) 

(146) 

Furthermore, using (9e) and (9f), 

[QT ® CT]h = [QT ® I][I(g) CT]h = 0 

[DT®TT]h = [I®TT][DT®I]h = 0. 

and (15a) 

(156) 

The orthogonality relationships in (9d), (15a) and (15b) demonstrate that the three matrices Q ® C, D ® T 

and D ® C together constitute (kik^ — mim2) dimensional vector space orthogonal to h. Interestingly, these 
matrices are not only formed with linearly independent columns they are also mutually orthogonal to each other. 

This orthogonality claim can be easily substantiated as follows : 

[QT®CT][D®T] = [QTD®CTT] = [0®0] = 0, 

[QT<g>CT][D®C] = [QTD<g>CTC] = [0®CTC]  = 0 

[DT®TT][D®C] = [DTD<g>TTC] = [DTD <g> 0]  = 0. 

and 

(16a) 

(166) 

(16c) 
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It should also be mentioned here that the matrices T and Q are useful only in this intermediate stage of deriving 

the 2-D error criterion and they will not be needed in the final optimization steps. 

If the vector h in (15) is replaced by x, then similar to (11), the following equation errors are formed : 

QT®CT\ /QT®CT\ 
DT®TT     x=      DT®TT     e A ee?. (17) 
DT®CT/ \DT®CT/     ~ 

The optimized e must be orthogonal to the estimated h, whereas the three matrices, Q <g> C, D <g> T and D ® C, 

were shown to be orthogonal to h in (9d), (15a) and (15b), respectively. Hence, e can be constructed as a linear 
combination of the columns of these orthogonal set of matrices, i.e., 

e =   (Q®C    D®T    D®C)f (18) 

where, 

f  A   [h   h    •••   fk1ka-mima]T (19) 

is a vector of constants which are to be determined. Using this form of e in (17), the equation error can be written 
as, 

'QT®CT\ /QTQ®CTC 0 0 \ 
DT®TT     x = 0 DTD®TTT 0 f A eeq. (20) 
BT®CTJ V 0 0 DTD®CTC/     - 

The matrix on the r.h.s. is square block-diagonal with square diagonal blocks and hence it can be inverted to 
uniquely determine the vector of constants f as, 

/(QTQ)-1®(CTC)-1 0 0 \   /QT®CT 

f= 0 (DTD)-! ® (TTT)-X 0 DT<g>TT 

\ 0 0 (DTD)-1®(CTC)-1/   VDT®CT 

(QTQ)-1QT®(CTC)-1CT\ 
(DTD)-1DT®(TTT)-1TT     x. 
(DTD)-1DT®(CTC)-1DT/ 

Using this expression off in (18) the fitting error becomes, 

e = [VQ <g> Vc + VT> <S> VT + Vn ® "Pc]x (22) 

where, V\.\ denotes the Projection matrix, e.g., Vc A C(CTC)_1CT. Unfortunately, this error vector is 
dependent on T and Q which must be removed. According to (14), the matrices C and D are orthogonal to T 
and Q, respectively. Furthermore, 

rank(T) + rank(C) = fci        and (23a) 

rank(Q) + rank(D) = k2 (236) 

Hence, using a theorem on Projection matrices [14], 

Vc + VT =lk, and (24a) 

Vr> + VQ =I*2. (246) 
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Using these relationships in (22), VT and Vq can now be replaced and the error vector can be written as, 

e = [(I*3 - VD)®VC + 7>D®(I*, - Vc) + VT>®VC]^ 

= [Ik2®Vc - Vn®Vc + Vn®Ikl - VT>®VC + Vr>®Vc]x 

= P*a ® Vc + VD ® Ikl - Vv>® Vc]x- 

(25a) 

(256) 

(25c) 

Note that in this final form of the error, there is no dependence on either T or Q. Hence, the error criterion for 
determining the denominator coefficient vectors c and d can now be written as, 

mine||(c,d)||^ 
c.d 

min (xT [I*., 
c.d 

) Vc + VD ® Ikl -Vo® 7>c]x) (26) 

Equations (26) and (9a) represent the desired decoupled criteria for determining the denominator and numerator 
coefficients, respectively. Optimization of (26) would produce the optimal c and d, denoted as, c° and d°, 
respectively. Letting e° denote the minimized error corresponding to the optimum denominator coefficients, the 

optimum spatial-response vector h can be found from, 

h° A x - (27) 

This h" can then be used in (9a) to obtain the optimal numerator vector, q°. 

Analyzing the criteria in (26) it is apparent that the first two terms are the orthogonal projections of the data 
x on to the parameter spaces of each of the two spatial dimensions. The third term is the orthogonal projection 
common to both dimensions but is subtracted once because the common (or, joint) projections have already been 
included once in each of the first two terms. It is very interesting to note that this criterion is quite analogous 
to the standard formula of the Probability of Union of two subsets. It may be emphasized here that this form of 

the error criterion is not only mathematically appropriate it is intuitively appealing as well and this form of the 
2-D error criterion was not arrived at in any of the previous generalizations of EFM [4, 5]. With further algebraic 
manipulations, the error-vector e can also be shown to be related to both the denominator vectors c and d in a 

quasi-\inea,T manner as, 

e(c, d) A ((Ita - PD) <g> W(c))XJ    (W(d) ® Iki )X
2) ( 

where, 

W(c) A C(CTC)-1 

W(d) A D(DTD)-1. 

and 

x£)T, 

X1 and X2 are constructed from the elements in X as [9, 17] 

X1 A (X?    Xj    • 

where, the (/, k)th term of X,- is formed as, 

X,-(/,Jb) A xi(l~k + m1 + l), for? = 1,2, , &2, and 

X2 A 
xm2+2 

Xfc, 

Xl 

x2 

Xfc2 — m2 ' 

\ 

(28a) 

(286) 

(28c) 

(29) 

(30a) 

(306) 
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Equation (28a) is one the key results derived in this Section. It clearly shows that both the unknown coefficient 

vectors c and d appear simultaneously in a 'quasi-linear' relationship w.r.t. the true error vector. This quasi-linear 
relationship can be exploited for simultaneous optimization of the criterion in (26) w.r.t. c and d. The algorithm 

is similar in flavor to the ones in [3-5, 8, 13], except that both the denominators are optimized and estimated 
simultaneously. Specifically, the algorithm iteratively minimizes the ^2-norm of the error vector formed in (26) 
in two phases. In Phase-1, the W matrices are treated as constants and are formed using the estimates of c or 

d obtained at the previous iteration. In Phase-2, the estimates are improved upon by setting the gradient of the 

complete error-norm to zero. The iterations are initialized by setting c = [1 0 ... 0]T and d = [1 0 ... 0]T. 

The iterations are continued until the changes in the estimates in successive iterations become very small. It may 

be noted here that extensive simulation experience in 1-D [7, 8, 13, 14] as well as for 2-D cases [13, 15] indicate 
that Phase-1 itself produces very good estimates of the filter coefficients and in most cases, there may not be any 
need for invoking Phase-2 at all. It may be noted here that in [4, 5], the complete error e(c, d) in (26) was not 

optimized. 

Symmetric Spatial Response - A Special Case : Many 2-D filters used in image processing are symmetri- 
cally shaped in the spatial domain. Some notable examples are, Gaussian and Circular filters. In designing such 

spatially symmetric 2-D filters, the methods in [4, 5] sometimes produced slightly different sets of denominator 
polynomials. Hence, the estimated spatial response may not possess the desired symmetry. This problem may 
be attributed to separate estimation of the individual denominators. In the proposed approach, both the denom- 

inators are optimized simultaneously by minimizing the entire error in (28a). If necessary, the desired symmetry 
may be imposed by setting, c = d in (28a) at the outset. For this special but very important special case, (28a) 
would have the following form : 

e(c) A [((I*2 - Pc^Wfc^X1 + (Wi2(c)®Ifcl)X
2]c, (31) 

where, the subscripts of W denote leading dimensions which may be unequal. Minimization of the norm of the 
error in (31) will result in a single set of optimal coefficients meant for both dimensions. This is one of the major 
advantages of the proposed approach over the ones in [4, 5] where separate optimization in each domain does not 
necessarily guarantee identical denominator coefficients in both domains. 

V. Simulation Results 

In order to demonstrate the effectiveness of the proposed algorithm, the results of the design of a Gaussian Filter 
are given here. The spatial response of a quarter plane Gaussian filter defined over the first quadrant is given by 

H(i,j) = 0.256322 e[-o.io3203{(i-4y+(J-^}]> 

where, (i,j) £ 5/ and the support Sj is given by 5/ = {(i,j) \ 0 < i < 14; 0 < j < 14}. The true or the 
desired spatial response is shown in Fig. 1. Note that the spatial response is symmetric around its center point. 
Fig. 3 through 5 show the estimated responses for filter orders (mi = 1TI2), 4, 5 and 6, respectively. The results 
were obtained by minimizing the norm of the error vector in (31) with different orders. The algorithm converged 
in 5-7 iterations. The plots clearly show that the estimated spatial impulse responses match the desired one 

quite closely and, as can be expected, the match improves as the filter order increases. With sixth-order the 
difference between the true and the estimated response is almost negligible. The closeness between the true and 
the estimated response was also measured in terms of the ratio of the power of the true response to that of the 
errors in each case. The ratios were found to be about 41.2dB, 61.4dB and 86.5dB for filter orders 4, 5 and 6, 
respectively. Simulations with other forms of 2-D filters also showed similar performance. 
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VI. Conclusion and Future Work : 

An optimal',2-D IIR filter design method has been presented. The algorithm is a 2-D extension of an 

existing optimal 1-D approach. The 2-D model-fitting criterion has been decoupled into a linear and a nonlinear 
sub-problems. The non-linear part has been shown to possess a quasi-linear relationship with the unknown 

denominator coefficients. The algorithm simultaneously optimizes the coefficients in both dimensions. Regarding 
future work, it may be noted that similar to EFM [3], the proposed algorithm is also applicable for strictly-proper 

designs only, albeit in 2-D. Recently, an optimal 1-D algorithm (OM) which is applicable for any general system 
with arbitrary number of poles and zeros, has been presented in [14]. Unlike EFM, the general 1-D algorithm 
in [14] formulates the criterion entirely differently. It shows explicitly that the true error is linearly related to 
the numerator coefficients whereas the denominator is nonlinearly related. The possibility of extending this work 
for designing 2-D filters with any arbitrary numbers of denominator and numerator orders is presently under 

investigation. 
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?-5   ■„ 

Fig. 1 : The True Spatial-Domain response for a 

15 x 15 Gaussian Filter. Fig. 2 : The Estimated Spatial-Domain response 
with mx  = m  = 4 

Fig. 3 : The Estimated Spatial-Domain response 
with mx  = nx  - 5 Fig. 4 : The Estimated Spatial-Domain response 

with mx  = m  = 6 
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ideal frequency response of bandpass filter 

5a 

frequency response with m1=m2=7, n1=i n2=6 

Fig. 5b 
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Section - 3.5  :      OPTIMAL FREQUENCY DOMAIN DESIGN OF DENOMINATOR SEPARABLE TWO- 

DlMENSIONAL DIGITAL IIR FILTERS 

SUMMARY 

Classical design techniques using Butterworth, Chebyshev or Elliptic polynomial are only limited particular 

types of design specifications, such as Bandpass, lowpass etc. A least-squares technique is presented for designing 
quarter-plane separable-denominator 2-D IIR filters to best approximate prescribed frequency domain (FD) spec- 
ification of any arbitrary shape. Structured Matrix Approximation approach is utilized to show that the FD error 

vector is linearly related to the 2-D numerator coefficients whereas the relationship with the 2-D denominators is 
quasi-linear. Furthermore, the numerator and denominator estimation problems are theoretically decoupled. The 

quasi-linear relationship with the denominator is used to formulate an algorithm for iterative estimation of the 
denominator. The numerator is found in one step using the estimated denominator. Computer simulations show 
the effectiveness of the proposed method and its superior performance compared to several existing methods. 

I. Introduction : 

Design of 2-D digital IIR filters from arbitrary frequency domain specifications is a highly nonlinear opti- 
mization problem [1-10]. Existing designs make use of variations of general nonlinear optimization techniques, 
such as Newton-Raphson or Fletcher-Powell or linear programming to meet the prescribed design specifications 

[3, 4, 6-8]. But these general methods are computationally intensive, highly sensitive to the choice of initial 
estimates and may take large number of iterations. Also, none of these methods make use of the underlying 
matrix-structure inherent in the 2-D filter design problem. For Spatial Domain designs, it has been shown by 
several researchers (including the second author) that appropriate utilization of the underlying matrix structures 
leads to insightful theoretical framework and efficient computational algorithms [1, 2, 5, 9, 10]. In practice though, 
the filter specifications are usually prescribed in the frequency-domain and hence, direct design in the frequency 
domain would certainly be more desirable. To the best knowledge of the authors no structured matrix framework 
has been developed for frequency-domain 2D IIR filter design. The primary goal of this work is to fill this gap 

by demonstrating that an equivalent structured matrix framework does exist in the frequency-domain also and 
furthermore, it can be utilized equally effectively for designing 2D IIR filters. Though the proposed framework 
can be adapted for general cases, we present the design of denominator-separable filters here because the inherent 
symmetry in many commonly used 2D filters conform to the separable-denominator structure and the stability 

of these filters can be easily verified. 

This work shows that the optimal 2D rational model identification problem belongs to a special class of mixed- 

nonlinear optimization problem where the linear and nonlinear parameters appear separately. Furthermore, the 
mixed nonlinear criterion can be decoupled into a purely linear problem for estimating the numerator and a 
separate nonlinear problem of reduced dimensionality, for estimating the separable denominators. The matrix 
structure of the nonlinear denominator criterion naturally leads to an iterative algorithm whereas the numerator 
is estimated with a single step of Least-Squares estimation. In simulations, the proposed approach provides 

superior match than various existing general approaches. 

II. Problem Definition : 

The transfer function of a 2-D separable-denominator LSI system is given by 

_    A(zuz2)     _    E?=oE?=oa(UK'*2"J     _    zfAz2 
ti^'Z2)-B(Zl)C(z2) ~ ES»»*;-' EJLVO'W'     zTbcT^ ( ) 
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where, b A [6(0) 6(1) • • ■b(m1)]T, c A [c(0) c(l) ■ ■ ■ c^)}1 

A A 

a(0,0)       a(0,l) 
a(l,0)       a(l,l) 

a(0,m2) " 
a(l,m2) 

a(mi,0)    a(mi,l)    •••    a(mi,m2). 

(2) 

and zi and z2 are vectors of the form z, A [1 z~l  z^2 ■ ■ -]T with appropriate sizes.   Let the &i x fc2 desired 

frequency response be 

x(wii,w2i)      a;(wii,w22)     •••     x(un,U2k2) 

Xd A 

»(wit1,W2l)      x(ujlkl,U)22)      ■■■     x(uikl,U2k2)_ 

(3) 

and the frequency response of the separable-denominator filter at the same frequency points be X. Let 
Xd A uec(X<j) and x A vec(X). The problem is to estimate the coefficients in b, c, and A by optimizing 

the following 2-D least-squares error criterion, 

min ||e||2 A ||xd - x||2 with 6(0) = l,c(0) = 1. 
b,c,A = 

(4) 

III. Decoupling the error-criterion : 

Let Hb(zi) and Hc(z2) be the inverse filters of B{z{) and C(^2) respectively i.e., B(zi)Hi(zi) = 1 and 

C{z2)Hc(z2) = 1. The system function can therefore be written as 

H(z1}z2) 

-!-*-J 

A{zi,z2) 
B(zx)C{z2) 

E"=oE"=oa(»..7>r'*2" 

(5) 

= Hb{zl)A{zl,Z2)Hc{z2) 

Assuming k\ x fc2 significant samples for the spatial response, the above relation can be expressed in matrix 

notation as 

where, 

H = HAH cT 

H A 

Ä(0,0) ä(0,1) 

Ä(1,0) ft(l,l) 

Hi(i.i) A 

hb(0) 0 
Mi)        MO) 

Mn0     Mni -1) 

A(0,Jb2-l) 
h(l,k2-l) 

.A(*i-1,0)    h(k!-l,l)    •••    ^(Jbx-l.jfea-l). 

0 
0 

MO) 

M&i - 1)    ht(ki-2)    •••    hi,(ki - ni - 1)_ 
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(7) 
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Hi A 

MO) 0 
Mi)        MO) 

M™2)       hc(n2 - 1) 

0 
0 

MO) (9) 

Wb A and    W, A 

I e-j^21 e-j2u>2 

(10) 

-j(k2-l)u>2i 

I     e-}V2k2      e-j2w2k2      . . .     e-j(k2-l)w2k2 

(11) 

_M*2-1)      M*2-2)      •••     M*2-"2-l)). 

The frequency response of the 2-D filter can be written in a matrix-decomposed form as, 

X = WjHWj 

where, 

1     e_JWl1      e~j2u,n     •••    e-^*1-1)"11 " 

Applying the vec operator on both sides of (10), we get 

vec(X) A x = vec(WbHWj) = vec(WbB.bLAHfwJ) = (WCH£ ® W6H^)i;ec(A) = (WcH
c

L®WbH
h

L)ai. 

(12) 
Hence, the error between the desired and the filter frequency response, as defined in (3), can be written as, 

e = xd - x = xd - (WcHi ® W6H^)a. (13) 

This expression shows explicitly that the frequency domain error is linearly related to the numerator coefficient 
vector a and nonlinearly related to the denominators in a rather complicated manner. Interestingly, if the 
denominator coefficients are known, the least-squares estimate of the numerator coefficients can be obtained by 
minimizing (4), 

a = (WcH
c

L®WbH
b

L)*xd (14) 

where # denotes the pseudo-inverse of the matrix. Substituting this in (10), we get the decoupled denominator 

criterion, 

||e(b,c)||2 = \\xd-(WcHi®WbH
b

L)(WcH
c

L®WbH
b

L)#xd\\2 = \\(Iklka - (PWCHJ ® PwbH>))*d||2    (15) 

where, Py A Y(YffY)_1Yff denotes the projection matrix of a matrix Y with H being the conjugate-transpose 

operator. Extending Theorem 2.1 in [12], it can be shown that if the denominator is estimated by minimizing 
criterion in (15) and that estimate is used in (14), the estimates retain the global optima of the original criterion 
in (4). 

IV. Reparametrization of the error-criterion : 

In this section the decoupled   criterion in (12) will be directly related to the denominator coefficients. The 
inverse filter relation B(z\)Hb(z\) = 1 can be expressed in matrix notation as 

BLHJ = Ijfcj 
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where,     B/; A 

6(0) 0 

6(m + 1)      m 0 

6(mi) 6(0) 0 0 

0         b(mi) ••        6(0) 

and     Hj A 

hb(0) 

h(ni)       hi(ni - 1) 

_Äi(lfei-l)    hh{ki-2) 

Bu 

(17) 

h(0) 

hb(ki -ni - 1) hb(ki - ni - 2) Ät(0). 

A  [H^ Hkl 

(18) 
Let, WjjWj = Ifcj. This inverse exists because the frequencies wut's are distinct. Using it in (16) with (17) and 

(18), 

BWblWbKb = lkl = 
BJ 

Wi,wrm Hk] = 
BuW^WH» 

BTW6/WH^ 

BuW6zWHjj 

BTWj,WHl 
(19) 

The bottom-left corner element of the matrix at right suggests that Wj[B and WH^ are orthogonal, i.e., 

(W^B)ff(WH|,) = 0. Also, since ranfc(W^B) + rank(WKb
L) = (jfei - m - 1) + («i + 1) = *i, using a theorem 

on projection matrices, 

PW»B + PwHfc=I*i- (2°) 

Similarly, from the inverse filter relation C(z2)Hc(z2) = 1, we can get 

PWC+PWHS =I*a- (21) 

Substituting the above relations in (12) and using Kronecker product representation (®), the error can be written 

as 

e(b,c) A [(Ifca-Pw»c)®Pw«B + Pw"B®I*i]x<i = [((I*2-Pwfc)®V6)X
1   (Vc®Ifcl)X

2] (). where, 

(22) 

X1 and X2 are formed with prescribed data, V6 A (WgB) ((W^B)ff (W^B) )~x and 

Vc A (Wc^C)((W^C)ff (W^C))-1. 

V. Simulation Results : 

Several designs were implemented using the proposed algorithm and the performances were compared with 
existing approaches. Fig. 1-3 show the results of the comparison. Fig. la, 2a and 3a show results using the 
methods proposed in [6], [7] and [8], respectively. For the same or less numerator/denominator orders, Fig. lb, 2b 
and 3b show the corresponding results using the proposed method. The relative rms errors [7] for the results in 
Fig. la, 2a and 3a are 0.67, 0.28 and 0.77, respectively. The errors for the results in Fig. lb, 2b and 3b are 0.21, 
0.26 and 0.68 respectively. Clearly, the proposed approach found better match with lesser number of coefficients, 
in all cases. The number of iterations for the proposed approach were less than 10 in all cases, whereas the general 
optimization approaches sometimes took close to hundred or more iterations. 
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Other Methods Proposed Method 

fig. n:u«modin|6l 

Fig. lb 

«2 *    * 

Fig.2a:M»iodinp) 
FiB.2b 

Fig.3a:Miinodin|q 
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Section - 3.6 :    OPTIMAL SPATIAI-DOMAIN DESIGN OF 2-D IIR FILTERS 

SUMMARY 

In this Section we present a structured matrix approximation framework to develop the most general form 

for optimal least-squares (LS) design of 2-D recursive filters from prescribed spatial domain data. Unlike the 
work in Section 3.4, no separability is assumed for the 2D denominator. Utilizing matrix structures inherent 

in this problem it is shown that the exact £2 error has a purely linear relationship with the 2-D numerator 
parameters whereas the 2-D denominator coefficients are nonlinearly related to the error. But more interestingly, 

the denominator and numerator estimation problems are theoretically decoupled into separate problems without 
affecting any optimality properties. In the decoupled form, the numerator estimation problem is shown to be 

purely linear. For estimating the denominator also, it is shown that the decoupled £2 error vector possesses a 
quasi-linear relationship with the denominator coefficients. Decoupled estimation leads to reduced computational 

complexity because there is no need for iterating on the numerators. Simulation results indicate that for several 

common filer design problems, the proposed general version performs better than the separable design developed 

earlier in Section 3.4. 

Introduction 

Many 2-D filter synthesis algorithms have been developed by extending existing algorithms for 1-D filter 
design. Specifically, Shanks et al [1] extended the work of Shanks [5]; Cadzow [2] and Shaw and Mersereau [3] 
utilized many of the general non-linear optimization methods; and Shaw and Mersereau [3] also extended the work 
of Steiglitz and McBride [6]. But these methods are suboptimal in the sense that they do not optimize the exact 
fitting error criterion. In contrast to these approaches, the iterative method (EFM) proposed by Evans and Fischl 

[7] is optimal in the 1-D case because it does optimize the true error criterion. There have been some previous 
attempts in generalizing EFM to 2-D also [10-13] but, as shown in this paper, the complete error criterion for 
the most general case has not yet been developed or optimized. Even the suboptimal error criterion had not not 

optimized w.r.t. the filter coefficients in two dimensions simultaneously. The Evans-Fischl method has been found 
to be highly accurate for 1-D filter design. In a recent work, we have extended 1-D EFM to designing 2-D IIR 
filters with separable denominators [8], where, unlike several existing 2-D methods [1,3,10-13], the exact fitting 
error was minimized w.r.t. the filter coefficients in both dimensions simultaneously. Simultaneous optimization 
was shown to be effective for some commonly occurring design problems with symmetric spatial response. 

In this paper we present a structured matrix approximation framework to develop the most general 2-D 
version of EFM for optimal least-squares (LS) design of 2-D recursive filters from prescribed spatial domain 
data. Utilizing matrix structures inherent in this problem it is shown that the exact £2 error has a purely linear 
relationship with the 2-D numerator parameters whereas the 2-D denominator coefficients are nonlinearly related 

to the error. But more interestingly, these two sets of parameters appear separately in the 2-D LS criterion. 
Hence, using a theorem on separability from Numerical Analysis literature, it is shown that the numerator and 
denominator estimation problems can be mathematically decoupled without affecting any optimality properties. 
In the decoupled form, the numerator estimation problem is shown to be purely linear. For estimating the 
denominator also, it is shown that the decoupled £2 error vector possesses a quasi-linear relationship with the 
denominator coefficients. Decoupled estimation leads to reduced computational complexity because there is no 
need for iterating on the numerators. Simulation results indicate that for several common filer design problems, the 
proposed general version performs better than the separable design developed earlier by the Principal Investigator. 
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Formulation of the Problem 

Let the prescribed first-quadrant spatial impulse response of size k\ x k2 be given by 

X 

*(0,0) 
*(1,0) 

*(0,1) 
x(l,l) 

x{0,k2-l) 

ar(l,*2-l) 

Let 

ar(*i-l,0)    *(Jbi-l,l)    •••    x(*i — l,fc2- 1). 

A{zuz2) _ Er=oE"=oa(M>r'*2"J 

H(zi,z2 

"^2 

■>}=<■ 
•\rrii   v-^m2 

(i) 

(2) 

be the transfer function of the 2-D filter to be designed to approximate X and let its ki x k2 spatial response be 

given by 

H 

ä(0,0) 

Ä(1,0) 
Ä(0,1) 
fc(l,l) 

Ä(0,Jb2-l) 
h(l,k2-l) 

(3) 

.A(fci-1,0)    A(*i — 1,1)    •••    /»(fci-l,fc2-l)J 

In order to develop the structured-matrix representation of the 2-D filter design problem, define two matrices 
containing the numerator and denominator coefficients as 

a(0,0)      a(0,l)     •••     a(0,n2) 
a(l,0)      a(l,l)     •••     a(l,n2) 

a(ni,0)    a(ni,l)    •••    a(ni,n2) 

6(0,0)       6(0,1)      •••     6(0, m2) 
6(1,0)       6(1,1)      •••     6(1, m2) 

g la^' + ^xCna + l)        and (4) 

£ JR,(mi + 1)x(m2 + 1) (5) 

.6(mi,0)    6(mi,l)    •••    6(mi,m2). 

respectively. In vector form define, x = uec(X), h = wec(H), a = vec(A) and b = uec(B) where vec is the 
operation of stacking all the columns of a matrix one below the other. The problem addressed in this paper is to 
estimate a and b by minimizing the following ^-norm of the error between x and h i.e., 

mm II e 
a.b 

:-h (6) 

Decoupling the Error Criterion 

Equation (2) can be rewritten as 

A(zi,z2) = H(zi,z2)B{zi,z2). (7) 

Note that k\ x k2 significant samples of the desired spatial response are to be matched. Hence, by equating on 
both sides of (7) the coefficients of equal powers of zj"1 and 2^" up to k\ — 1 and k2 — 1, respectively, equation 
(7) can be expressed using matrix-vector notation as 

a 
= 

H1" 
b = 

B1" 

0 H2 BT 
h, (8) 
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where H1, H2, B1 and BT are denned in the Appendix. If the impulse response H and the numerator coefficients 
b were known, the numerator coefficients a can be calculated from the top part of (8) as 

a=H1b = B1h. (9) 

However, in this case the exact H is unknown. Hence, replacing H2 in the lower half of (8) by X2 formed using 
the corresponding elements of X, would produce the following 'equation error', 

d(b) A X2b = BTx. 

From (6), x = h + e. Using this in (10), we get 

d(b) =BT (h + e) 

=BT e,    using (8) 

(10) 

(11) 

Also according to (8), B is orthogonal to h. Hence, based on the orthogonality principle [9] an inverse relationship 
can be established using similar steps as in [7, 8], 

e=B(BTB)-1BTx 

A WBTx 

=WX2b 

A W g : G 

=Wg + WGb (12) 

where b A [1 : bT]T, g is the first column of X2 and G contains the remaining columns of X2. If W is assumed 

to be independent of b, by setting the gradient of ||e||2 in (13) to zero, the denominator vector b can be estimated 
as, 

b = -(GJ WJ WG)"1GTWTWg (13) 

But since W does depend on b, the above equation will be used to estimate bW iteratively, with W formed using 
b»_1) estimated at the previous iteration. A convenient initial estimate of b can be obtained by minimizing the 
equation error in (10) as 

1 
fc(°> = 

_-(GTG)"1GT 
(13) 

Simulation Results 

Computer simulations have been done to design zero-phase lowpass [14], zero-phase bandpass [14], Gaussian 
and Laplacian filters. It has been found that for same filter orders, the proposed method performs better than the 
separable-denominator case [8] for the lowpass and the bandpass cases, while for the Gaussian and the Laplacian 
cases the separable-denominator method [8] appears to perform better. Also, in all the examples, the proposed 
method performed better than the modified Prony's method given in [14]. Some plots have been included of the 
obtained designs. 

Appendix 
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Definitions of the matrices used in (8) are as follows.  It should be noted that the matrix structures have 
been given only for, ni + 1 < mi, «2 + 1 < "H, the modifications for other cases being obvious. 

H1 A 

Ha 
Hi 

on 
o 

H*      Hi    !    •••   H£     0 

e]R(n1 + l)(n2 + l)x(m1 + l)(m2 + l))   ^^ ^ ^ 

HJ A 

ä(O,O 

ML«) 
o 

fc(o,o 

h(ni,i)    h(ni — l,i)    •••    h(0, i)     0 

jR(n1 + l)x(rni + l))   and (A2) 
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Jm2 
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-wk2 
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J^ A 

7»(ni + 1,J) 
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h(ki — 1, i) 

A(0,t)     0 

0 
0 
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J0 

ij —m2 —1 - 
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A(0, i) 

A(&i — mi — 1, i) 

(A.3) 

G IR(*I-«I-I)X('"I+
1
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(A4) 
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ä(O, o 

A(mi,i)       A(mi — 2,«') 
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0 

fc(0, i) 
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1
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Fig. 1 : 2-D Bandpass Filter Design Example. Fig. 2 : 2-D Lowpass Filter Design Example 

Separable-Denominator case 

Optimal General Case 

Prescribed Response 
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SECTION - 3.7 DISTRIBUTED LOOK-AHEAD : A GENERAL APPROACH FOR PIPELINING RECURSIVE 

DIGITAL FILTERS 

SUMMARY 

A new Look-Ahead (LA) scheme, Distributed Look-Ahead (DLA), is proposed for pipelined implementation 

of recursive digital filters. It is established that in case of many recursive filters, DLA can provide equivalent 
and stable implementation with reduced pipeline delay and hardware complexity, when compared with some 

existing LA schemes [4, 5]. The existing Scattered Look-ahead implementation [5] achieves stability at the cost 

of increased multiplication and latch complexities and considerable delay in output generation. The Clustered 
look-ahead approach can not always guarantee stability [5]. This work shows that, in order to attain stability, the 

output samples need not be clustered or equally scattered. Indeed, in many filter design problems, stability can 

be maintained by using unequally distributed past output samples. When compared with the scattered approach, 
the proposed scheme uses fewer number of pole-zero cancelations and the introduced roots are not necessarily at 
the same radii as the original filter poles. Hence, the proposed DLA scheme has reduced multiplication and latch 

complexities, higher area-efficiency and it produces outputs with reduced delays. 

1. Introduction 

Look-ahead pipelining is highly effective in attaining high sampling rate and computation speed for low- 
cost VLSI implementation of digital IIR filters [3-5,9, 13]. Among existing LA schemes, the Clustered (CLA) or 
Time-Domain (TD) approach [3, 4, 9] generates the present output using contiguous past output samples whereas 
the Scattered (SLA) or z-domain (ZD) approach [5, 12] uses equally separated past output samples. A desirable 

feature of SLA is that stability is guaranteed. However, this is achieved at the cost of relatively large delay in 

output generation as well as increased multiplication and latch complexities to implement the numerator. On 
the other hand, CLA may require filter order augmentation to maintain stability, which also comes at the cost of 

increased hardware complexity [3]. 

In this paper, we propose a general Look-Ahead approach that opens up a large class of new possibilities to 

provide stable realizations with reduced pipeline delay and hardware complexity than the existing LA schemes. 
Possible stability regions for the proposed scheme are also addressed. This paper argues that, in order to attain 
stability in pipelined form, the output samples need not be clustered [3, 4, 9, 13] or equally scattered [5, 12]. 
Indeed, for many filter design problems, it is shown that stability can be maintained by using unequally distributed 

past output samples. The proposed scheme is denoted as Distributed Look-Ahead (DLA) approach, where the 
number of denominator coefficients can be kept same as that in the original filter (as in SLA) but the numerator and 
denominator orders are lower than that in SLA. Hence, the proposed DLA scheme can offer reduced multiplication 
and latch complexities, higher area-efficiency and it can produce outputs with reduced pipeline delay than the SLA 
scheme. Unlike SLA but similar to CLA, stability is not guaranteed with the proposed scheme. However, simple 

stability conditions and regions can be derived and have been presented for various pipeline stages. It is also 
demonstrated that the numerator and denominator polynomials can be factorized into lower-order polynomials, 
which can further simplify hardware implementation and complexity. Examples are included to demonstrate the 
validity of the proposed approach. 

The paper is organized as follows. In Section 2, two existing LA schemes are briefly summarized. In Section 
3, the general Look-Ahead scheme is proposed along with some examples. In Section 4, Stability conditions are 
presented for pipelining of a 2nd-order recursive filters using the proposed DLA scheme and in Section 5, several 
examples are provided to demonstrate that stable pipelined implementations with DLA can be achieved with 

reduced hardware complexity. 
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2. Existing Look-Ahead Schemes 

Consider a recursive digital filter with L-th order numerator and iV-th order Denominator of the form, 

H{,)= £%*•" ^ (1) 

which is to be implemented in pipelined form. The two major existing Look-Ahead forms are briefly outlined 

first. 

2.1.   Clustered Look-Ahead (CLA) : M-stage CLA pipelining of the filter in (1) would have the following 

form [3, 4, 9, 13] : 
Hg(z) = 1 + M-1 + b2z~2 + ■■■ + 6L+M-1Z-(

L
+

M
-

1
) 

1 + aMz-M + aM+iz-(M+V + ■■■ + aM+N_lZ-(M+N-i) ( > 

Note that the denominator coefficients are ordered in a clustered form. The numerator (non-recursive portion) 
can be implemented by N + M multiplications and the denominator (recursive portion) can be implemented with 

N multiplications . Thus, the total multiplication complexity is (2N + M) and the latch complexity is linear in 
M. The extra delay in producing output is M. 

2.2. Scattered Look-Ahead (SLA) : An equivalent M-stage pipelining of the same iV-th order recursive filter 

can be obtained by [5, 12], 

H*(* - l + b^+b2Z-> + ... + bN(M_1)+Lz-(^-^) 
N^Z>- 1 + aMZ-M + a2MZ-2M + ... + aNMZ-NM W 

Note that the non-zero denominator coefficients are equally 'scattered'. The multiplication complexity for the 

non-recursive portion of the pipelined implementation is (NM + 1) and that of the recursive portion is N. Thus, 
the total multiplication complexity is (NM + M + 1) and the latch complexity is square in M. The extra delay 
in producing output is (NM — N), which may be significant because of high order of the filter in pipelined 
form. However, if M is a power of 2, then using a decomposition technique the total multiplication and latch 

complexities can be further reduced [5]. 

3. The Proposed Distributed Look-Ahead Pipelining (DLA) 

In this new look-ahead scheme, the filter transfer function is transformed to have the form, 

HM(A _  1 + blZ-> + ■ ■ • + bM+kL_N+LZ-(M+^-N+V  
n° KZ)      1 + aMz-M + aM+klz-(M+k>) + aM+k2z-(M+*>) + ■■■ + aM+kLz-^+^) { } 

where, fci,&2, • • •, in general, can be arbitrary integer values with kj, = N, in order to keep the total number 
of denominator (at) coefficients same as in the original denominator in (1). It is easy to show that the two 
existing look-ahead schemes defined in equations (2) and (3) are special cases of this general M-stage look-ahead 
representation. Specifically, in case of CLA, fcj = i and for SLA, k{ = Mi, with 1CL = (N — 1)M. Clearly, if the 
denominator order of DLA, (M + k^) is less than the order for SLA (NM), the proposed LA scheme would offer 

considerable hardware savings over SLA. 

A comparison of the multiplication complexities of the three pipelining schemes are given in Table 1. Note that if 
M is a power of 2, then using a decomposition technique, the total multiplication complexity of the SLA scheme 

can be further reduced to L + N + N log2(M). 

4. DLA Based Pipelining of Second-Order Filter Blocks 
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In this section, an iterative scheme is given first for determining the coefficients for pipelining second-order 

(N = 2) filter blocks. Then several examples of DLA implementation are given for different values of M. 

4.1. Iterative Scheme for Obtaining Augmentation Polynomial : Consider a second order filter transfer 

function, 

For DLA-based pipelining of this second-order filter, the only choice is, k\ — h^ = 2 in (4). To determine the 
DLA pipelined coefficients from these serial coefficients, it may be noted that H^(z) must equal the original 
H(z) and hence, Hp(z)ca,n be obtained by multiplying an augmentation polynomial D(z) in the numerator as 

well as the denominator of (4), i.e, 

HD
 
{Z) ~ Mz)D{z) ~ H{Z) (6) 

where, the coefficients of D(z) = 1 + d\z~l + d^z~2 + V <IMZ~
M

 should be selected such that the denominator 

possesses the desired DLA form in (4). It can be shown that the coefficients of the D(z) polynomial can be found 

recursively using the following steps, 

Initialize :    do = I, d\ = —a\ and d^i — -jf^M-i 

Iterate :   for i = 2 to M — 1 

di = -aidi-i - 02^.-2 (7) 

4.2. Examples : Let the complex conjugate poles of the second order filter block be located at z = re±jfl. Then 
the transfer function of the second order filter would have the form, 

H^ = 1 - 2r cos Oz-i+riz-2 ^ 

where, the numerator has been set to unity without any loss of generality. Using ot\ = 2r cos# and a? = r2 in 
the iterations of (7), a 4-stage (M=4) DLA pipelined filter can be shown to have the form, 

4 1 + 2r cos 0Z-1 + r2(2 cos 26 + \)z~2 + 4r3 cos 6 cos 26z~3 + 2r4 cos 26z~* 
0^~ l-r4(2cos40+l)z-4 + 2r6cos20z-6 {) 

Interestingly, this transfer function can be further factorized into a more convenient decomposed form as, 

ff4n_  (1 + 2r cos 6z-1 + r2z~2)(l + 2r2 cos 2dz~2)  
D^Z'~ (l-2rcos9z-1+r2z-2)(l + 2rcos6z-l + r2z-2)(l + 2r2cos29z-2)' {    ' 

Implementation of this decomposed form allows hardware savings over its SLA counterpart. Using similar steps, 
it can be further shown that 3, 6 and 8-stage DLA implementations of the second-order filter have the following 
decomposed forms, respectively, 

Jj3(;) = 1 + 2rcosflz-1 +r2(2cos20+ l)z~2 + ^(2 cos 20 + l)z~3 

l-^(2cos4ö + 2cos2ö + 5),-3 + ^(2cosö + l)z-5 

6  (1 + 2r cos 6z-1 + r2z~2)(l + 2r2 cos 26z~2 + r4(4 cos2 26 - \)z~A)  
D^Z' ~ (1 - 2rcos6z-1 + r2z~2)(l + 2r cos6z'1 + r2z~2)(l + 2r2 cos 26z~2 + r4(4cos2 26 - l)*-4)      ^    ' 
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H8( )_ (1 + 1rcos6z~l + r2z~2)(l + 2r2cos6z~2 + r4(2cos4(9 + l)z~4 + r6(4cos46»cos20 + l)z~6) 
D(

-
Z
' ~ (1 - 2rcos^-1 + r2z~2)(l + 2r cos6z~l + r2z-2)(l + 2r2 cos26z~2 + r4(2 cos40 + l)z~4 + r6(4cos40cos 26» + 

(13) 
A comparison of the hardware complexities between the SLA and the DLA schemes for M = 3,4,6 and 8 after 
their respective decompositions is given in Table 2. 

From this table it is apparent that for all stages of pipelining the DLA scheme has a definite edge over the 
SLA scheme as far as hardware complexity is concerned. Next, the stability conditions for the DLA scheme are 
established for second-order filter blocks for a several values of M. 

4.3. Stability conditions : Consider the general second order filter block with complex conjugate poles at 

z = re^e, represented by the transfer function in equation (8). 

4.3.1. M = 4 case : The 4-stage DLA pipelined implementation of the second order filter is obtained by using 
the general iterative scheme discussed above. The transfer function of this is as in equation (10). 

This 4-stage pipelined implementation will be stable if the roots of the factor, (1 + 2r2cos20z-2) are less than 

unity. It can be shown that this would be true if 6 < 0.5 cos-1 (^r) • The region satisfying this stability condition 
is shown in Fig. 1 as the shaded area. 

Hence, if for any 4-stage pipelined implementation of CLA produces an unstable filter, but it is found that the 
condition on 6 stated above or in Fig. 1 is satisfied, then using the proposed DLA transformation would definitely 
be more appropriate than the SLA in (3), because the later would require extra hardware for implementing both 
the numerator and the denominator. The exact savings in hardware for this case can be found in Table 2. 

4.3.2 M = 6 case : Consider the 6-stage implementation of the 2nd-order filter which has the convenient factored 
form shown in equation (12). 

Because of the convenient quadratic factored form, the stability region is easy derive and is displayed in Fig. 2. 
It is interesting to note that these decompositions have simple power of 2 factors and hence, the corresponding 
hardware complexities are less than the SLA decomposition scheme given in [5]. The hardware savings being 2 
multiplier-adder units and 8 latches (refer to Table 2). 

Similar stability regions can be evaluated for other M values. 

5. EXAMPLES 

5.1. Example with M = 4 : It had been shown in [5] that the second order transfer function 

H{Z) = l-5/4^ + 3/8,-2 (14) 

produces unstable filter with CLA implementation (refer to Figure 3(a) ). Using the DLA formulae presented 
above, it can be shown that 

the 4-stage implementation is given as, 

_(! + ! 
1- 0.1595z-4 + 0.1143z-6 

rr4 / x _ (1 + 1-25*"1 + 0.3750^)(1 + 0.8125z-2) 

Using the SLA technique, 

rTA( v- (1+1.25z-1+ 0.3750z2)(l +0.8125z-2 + 0.1406z-4) 
H^z>- 1-0.3789z-4+ 0.0198z-8 (16) 
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Pole-zero plots of the 4-stage DLA and SLA implementations are shown in Figures 3(b) and 3(c). The DLA and 
the SLA implementations for this example is shown in Figures 4 and 5 respectively. They clearly demonstrate the 
hardware savings for the DLA case. Table-2 also shows the gain in hardware requirements with the DLA case. 

5.2. Example with M = 6 : Consider the second order transfer function 

H^ = l-1.4z-i + 0.5,-»- (17) 

A 6-stage CLA implementation of equation (17) yields an unstable pipelined filter. The pole-zero plot of the 
unstable CLA filter is shown in Figure 6(a). Using the DLA formulae given above, it is shown that'the 6-stage 
DLA implementation is stable (refer to Figure 6(b)) and is given as, 

u6 , ^ _ (1 + 1.4z-1 + 0.5z-2)(l + 0.96z-2 + 0.6716z-4) 
HD{Z)

 ~ l-0.4132z-6 + 0.1825z-8 (18) 

and the corresponding SLA implementation is 

6      _ (1 + 1.4z-1 + 0.5z-2)(l + 0.96z~2 + 0.6716z-4 + 0.2400z-6 + 0.0625z-8) 
s^~ 1-0.1647z-6 + 0.0156z-12 ^    ' 

The pole-zero plot for the SLA implementation is shown in Figure 6(c) and the hardware savings for the DLA 
case over the SLA case for this example is also given in Table-2. 

Hence, in all these cases, there is no need to use SLA for stable pipelined realizations and considerable 
hardware savings and reduced pipelining delays can be achieved if DLA is used instead. 
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Pipelining 
Methods 

Multiplication 
Complexity 

Delay 
in producing 
First output 

CLA L + M + N-l M 
SLA NM + L NM 
DLA M + kL-N + 2L + l M + kL 

Table 1: Comparison of Hardware Complexities between the Various Pipelining Techniques 

Pipeline 
Stages 

Pipeline 
Method 

Number of 
Multiplier 

/Adder 
Units 

Number 
of 

Latches 

Delay 
in 

producing 
First 

Output 

M = 3 SLA 6 10 6 
DLA 5 8 5 

M = 4 SLA 6 14 8 
DLA 5 10 6 

M = 6 SLA 8 22 12 
DLA 6 14 8 

M = 8 SLA 8 30 16 
DLA 7 18 10 

Table 2: Comparison of Hardware Complexities for DLA Pipelining for various M 

Stability Region, DLA(M =4) Stability Region, DLA(M = 6) 

Figure 1: Stability Regions for M = 4 Case Figure 2: Stability Regions for M = 6 Case 
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Figure 3: Pole-Zero plots for M = 4 case 
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Section - 3.8 OPTIMAL LEAST-SQUARES DESIGN OF PIPELINED RECURSIVE FILTERS IN THE TlME- 

DOMAIN 

SUMMARY 

Currently, look-ahead (LA) pipelined recursive filters are obtained primarily via transformation of a given 

un-pipelined transfer function [3-5, 9, 13]. For these approaches, it is assumed that the un-pipelined transfer 

function has already been designed as an intermediate step. In this Section, we present a new algorithm (0M- 

LA) for direct and optimal estimation of the coefficients of recursive filters in look-ahead pipelined form. OM-LA 

is developed by appropriate modification of a recently proposed optimal method (OM) for designing un-pipelined 

filters [7]. It is demonstrated that the proposed one-step approximation can achieve superior match with reduced 

pipelined filter order because it does not rely on pole-zero cancelations as in current LA pipelining approaches. 
It is also shown that the denominator polynomial can be constrained to possess any of the possible look-ahead 

configurations. Unlike some existing methods [1-3], OM-LA minimizes the true time-domain fitting error-norm 
between the prescribed and the estimated impulse response and produces superior results. Several examples are 

provided to illustrate the effectiveness of the proposed approximation algorithm. 

1. Introduction Look-ahead pipelining is highly effective in attaining high sampling rate and computation 

speed for low-cost VLSI implementation of digital IIR filters [3-5, 9, 13]. It may be noted that the original LA 
schemes for pipelining recursive filters [3-5] (including DLA proposed in the previous Section), consist of two 
steps. First, an un-pipelined (or 'Serial') filter is assumed to be available, i.e., the transfer function of the filter in 
serial form is assumed to have been approximated by matching some prescribed or desired specification. The LA 
transformations are then introduced as a second step when the filter coefficients in pipelined form are obtained by 
applying either CLA, SLA or DLA transformation on the serial filter coefficients. The LA schemes differ in the 
way order augmentation of numerator and denominator polynomials is achieved. Mathematically, the inherent 
transfer function remains exactly identical before and after any LA transformation is applied. The higher orders 

in the pipelined cases are accounted for by pole-zero cancelation which has no effect on the filter's response or its 
transfer function. In this part of the project, a direct approach is proposed for approximating Recursive filters 

having desired Look-Ahead pipelined forms. 

A significant drawback of the current two-step approach to pipeline recursive filters is that the degrees of 

freedom offered by the higher orders in the pipelined filters are not exploited in any way. Moreover, for finite 
precision implementation using limited number of bits, pole-zero cancelation may cause numerical implementation 

problems. Hence, a key motivation for the later part of the paper is to explore if the look-ahead recursive filters 
are designed directly in a single step, superior approximation can be achieved at lower pipelined filter order while 
avoiding the pole-zero cancelation problems associated with the current two-step design process. In these regards, 
it may noted that frequency domain approaches have been considered in [1] while a time-domain approach had 
been taken in [2], though only the modified least-squares error criterion has been minimized. In this paper, a 
general theoretical framework for direct and optimal Least-Squares estimation of coefficients of pipelined digital 
IIR filters in the time domain is presented. The proposed approximation approach is developed by appropriate 
modification of a recent work by the first author on optimal time-domain approximation of recursive digital 

filters [7]. The true nonlinear error criterion is theoretically decoupled into two separate sub-problems of lower 
computational complexities. Estimation of the numerator is a linear single-step problem whereas the non-linear 
denominator criterion possesses a weighted quadratic form that is convenient for iterative optimization. It is 
shown with several examples that the proposed approach can produce pipelined filters with better match to 
prescribed specs with much lower filter orders and without any pole-zero cancelations. 
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The paper is organized as follows. In Section 2, existing LA schemes are briefly summarized. In Section 3, 

the one-step Look-Ahead pipelined filter approximation method is presented and in Section 4, some simulation 

examples are provided to illustrate the effectiveness of the direct approximation approach. 

2. Transfer Functions for various Look-Ahead Schemes 

Consider a recursive digital filter with L-th order numerator and iV-th order Denominator of the form, 

which is to be implemented in pipelined form. The major existing Look-Ahead forms are briefly outlined first. 

2.1. Clustered Look-Ahead (CLA) M-stage CLA pipelining of this filter would have the following form: [3, 

4, 9, 13], 

HM(A _ l + 6i^1 + M-2 + --- + feL+M-i^£+M-1) (2) 
Hc {Z) ~ 1 + aMz~M + aM+i*-(M+1) + • • • + aM+N^z-(M+N-i) ^ ) 

2.2. Scattered Look-Ahead (SLA) : An equivalent M-stage pipelining of the same JV-th order recursive filter 

can be obtained by [5, 12], 

UM,   ^ _   1 + M-1 + M-2 + • • ■ + ^(M-l)+L*-(Jy(M-1)+1° n, 
"SW- l + aMZ-M + a2MZ-2M + ... + aNMZ-NM W 

Note that the non-zero denominator coefficients are equally 'scattered'. 

2.3. Distributed Look-Ahead Pipelining (DLA) [8, see the previous Section also]: In this new look-ahead 

scheme, the filter transfer function is transformed to have the form, 

„M(A _  1 + blZ~l + ... + bM+kL-N+LZ-(M+^-N+V  
"D K ' ~ 1 + aMz-M + aM+klz-W+W + aM+k2z-(M+k^ + ■■■ + aM+kLz-(^+^) K } 

where, k\,k2,---, in general, can be arbitrary integer values with &£ = N, in order to keep the total number 
of denominator (a8) coefficients same as in the original denominator in (1). It is easy to show that the two 
existing look-ahead schemes defined in equations (2) and (3) are special cases of this general M-stage look-ahead 

representation. Specifically, in case of CLA, ki = i and for SLA, &, = Mi, with &£ = (N — 1)M. 

2.4. General Distributed Look-Ahead Representation of Recursive Filters : In general, any of the 
above M-stage Look-Ahead Pipelined transfer functions can be obtained from: 

„M(A i + 6iz-i + ---+60z-q  m 
{Z)  ~ 1 + aMz-M + aM+klz-iM+kl) + ... + aM+kLZ-(M+k,) ^ 

A -jrr (6«) 

= Ä(0) + h{l)z~l + ... + h(K- l)z-(K-V + ■■■ (66) 

where, appropriate choice of Q and a set of fci, fc2, • • •, fcz, would lead to any of the desired Look-Ahead forms 
in (2)-(4). Note that the DLA representations in (4) and (5) differ only in the choice of the numerator order Q 

which need not be restricted for the approximation algorithm. In fact, by choosing Q lower than those required 
by (2)-(4), the total number of coefficients for the Look-Ahead representation can be reduced, if desired. 

3. Proposed Method for Optimal Estimation of Coefficients of Look-Ahead Pipelined Recursive 
Filters 
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The CLA, SLA and DLA approaches to pipelining are two-step design processes which enforces "exact 

equality" to an already existing H(z). Hence, even though the filter orders are significantly higher after any of 
the Look-Ahead transformations are applied, the characteristics of the filters do not change. Clearly, the original 
"lower order" H{z) must have been obtained via some kind of approximation approach to match certain desired 
time-domain or frequency-domain specifications. It is well known that a superior fit can be achieved with higher 

filter orders. However, in case of the existing LA schemes no attempt is made to exploit the extra degrees of 

freedom of the higher order Look-Ahead realizations in order to achieve superior match than the original H{z). 

In this Section, we propose to use an optimal least squares approach [7] to design the look-ahead recursive filters 

directly in a single step. The goal is to achieve superior match to the original specs with lower filter orders than 

otherwise would be needed with the existing two-step procedures. 

Let, 

hd = [hd(0)   hd(l)    ■■■    hd(N-l)]T (7) 

denote the desired impulse response (IR) of the pipelined (or un-pipelined) filter. Our goal is to estimate the a,- 
and bt coefficients in (2), (3) or (4) so as to match this desired IR specification. Since the general DLA expression 
in equation (5) includes all the possible LA representations, we will outline only steps to determine the coefficients 

of the general M-stage DLA representation in (5). 

Stacking the first N significant IR samples of HM(z) in (6), define, 

h = [A(0)    A(l) h(N-l)? (8) 

The problem of estimating the LA coefficients to match a given h<j can be stated as follows, 

JV-l 

MO-^W)} A(z) 
rmnaib ||e||2 A  min V, 

—    a,b 
«=0 

where,5(fc) = {j;    jj J °Q> 

e A h<j — h, 

a A [1 aM   •••  aM+iti,]T,and 

b A [1 6i   •••  bQ]T. 

(9) 

(10) 

(10a) 

(106) 

(10c) 

Rewriting (6) as 

BM{z) = HM(z)AM{z) 

and equating the coefficients of equal powers of z~l on both sides of this equation, 

b 

0 H2 

Ja,        where, (11) 

Hi A 

MO) 
h(l) 

HQ) 

0 
0 

Ä(0) 

on 
o 

oJ 

and     H2 A 

KQ + 1) 
h(Q + 2) 

h(N) 

ft(0)    ••• 0 
h(l)    ■■■ 0 

    h(N-M-kL) 

(12) 

The matrix J in (11) is necessary to constrain some of the coefficients in the denominator to be zero, and it is 
formed as follows: Starting with the identity matrix of size (M + ki + 1), remove all columns corresponding to the 
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indices ofthose coefficients of the denominator which are zero. The remaining matrix, of size (M+fc^ + 1) x (L+2), 

becomes J. From the bottom partition of (11), i.e., 

H2Ja=0, 

it can be shown [7] that the minimization problem stated in (9) is theoretically equivalent to first solving for the 

denominator in 
min    aTJTH^(ATA)-1H2Ja (13a) 

a 

and then estimating the numerator from the top portion of (11), i.e., 

b = HiJa. (136) 

Note that the matrix A is a banded Toeplitz convolution matrix and can be defined similar to H2, as given in [7]. 
The design problem has thus been decoupled into two separate sub-problems of reduced computational complexity. 

Note that the denominator criterion in (13a) has a weighted-quadratic structure where the weight matrix in the 
middle itself depends on the unknown coefficients. For estimating a, an iterative algorithm has been presented 
in [7], where the estimates at the previous iteration is used to form the middle matrix (ATA)-1. An appropri- 
ate modification of that algorithm can be used here to minimize (13a) to obtain the optimal estimates of the 
denominator a, from which the numerator b can be computed using (13b). 

4. Simulations on One-Step Approximation 

4.2. Simulation 1 

In this case, a lowpass example has been considered. In all figures, the solid line denotes the desired response 
and the dashed line corresponds to the response using the proposed approximation approach. Figure 1(a) shows 
the response of the un-pipelined filter approximation with numerator and denominator orders = 3. Note this 
response would remain identical if the SLA filter is obtained from it using Parhi's approach [5]. The error is 
—9.9dB. Figure 1(b) shows the response of the CLA filter approximation with Q — 6, M = 4&i = 1 and hi = 2 
and has an error of —19.5of5. Figure 1(d) shows the response of the DLA filter with Q — 6, M = 4, ki = 2 and 

&2 = 4 with an error of —32.50*0. Finally, Figure 1(c) shows the response of the SLA filter designed directly by the 
OM-LA. For Figure 1(c) — 80.7d\B. It is evident from the error values and a comparison of Figures 1(a) and 1(c) 
that the SLA filter designed directly by OM-LA is much superior to that of Parhi [5]. The respective pole-zero 
plots of the filters are shown alongside. Note that the OM-LA does not produce cancelling poles and zeros. 

4.2. Simulation 2 

A notch filter example has been considered for this example. Figure 2(a) shows the response of the un-pipelined 
filter with numerator order, L = 8 and denominator order, N = 10. The responses with the CLA , SLA and 
DLA approximations are shown in Figures 2(b), (c) and (d) respectively. Note the filter order and hardware 
requirements for the SLA filter would be extremely high even for the pipelining stage of M = 3. Table 1 shows a 
comparison of the hardware used in the three cases. From Table 1 and the responses in Figure 2, it is apparent 
that stable CLA or DLA approximations can be achieved with excellent match and much reduced hardware 
requirements than SLA. 
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Figure 1: Lowpass Filter: (a) Response of an un-pipelined filter (b) Response of the CLA filter 
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Section - 3.9   PIPELINED LOOK-AHEAD IMPLEMENTATION OF A CLASS OF 2-D IIR FILTERS 

SUMMARY 

In the previous section we have presented a new scheme (referred to as distributed look-ahead) which is 

a compromise between the two existing look-ahead approaches for high speed implementation of 1-D Recursive 

Digital filters. To date neither the Scattered Look-ahead nor the Distributed scheme has so far been utilized for 2- 

D IIR filter implementation, primarily because the 1-D stability properties of these LA schemes do not necessarily 

translate to general 2-D IIR filters. The primary focus of this paper is to demonstrate that for a special but very 

important class of 2-D IIR filters, namely for Denominator Separable configurations, the benefits of these stable 
look-ahead schemes can indeed be taken advantage of. The efficiency of the proposed implementations and the 

reductions in multiplication and delays are demonstrated with some examples. 

I. Introduction : 

Two-dimensional (2-D) IIR filters have many practical applications, such as in radar, digital image processing, 

remote sensing, etc. Processing time and throughput delay are two of the major problems for implementing 
2-D digital IIR filters. Look-Ahead (LA) pipelining has been found to be highly effective for attaining high 
sampling rate and high computation speed for low-cost VLSI implementation of recursive digital filters [1-6]. In 
particular, the Clustered Look-Ahead (CLA) scheme has been utilized for implementing both 1-D and 2-D IIR 
filters [2]. However, it is known that even for the 1-D case CLA can not assure stability [2]. In order to avoid 
the stability problems of CLA, several other LA schemes have been proposed, namely, Scattered Look-Ahead 
(SLA) [2], Minimum Augmentation CLA (MACLA) [3] and Distributed Look-Ahead (DLA) [9]. To the best 
of our knowledge these later schemes have not so far been utilized for 2-D IIR filter implementation, primarily 
because the 1-D stability properties of these LA schemes do no necessarily translate to general 2-D IIR filters. 
The primary focus of this paper is to demonstrate that for a special but very important class of 2-D IIR filters, 
namely for Denominator Separable configurations, the benefits of these stable look-ahead schemes can indeed be 

taken advantage of. 

Separable-Denominator 2-D IIR filters have considerable practical applications. Firstly, many commonly used 
2-D filters such as, Gaussian, Laplacian-Gaussian, Lowpass, Bandpass, are known to possess symmetric spatial 
response and hence, many of these filters inherently conform to denominator-separable transfer functions [7, 8, 
11-13]. Second, a general 2-D filter can be approximated by a denominator-separable filter [12, 13]. Thirdly, the 
design of 2-D separable-denominator filters are much easier and each of the 1-D denominators can be implemented 
using highly modular structures [11]. But most importantly, the stability tests for these filters are simpler and 

identical to those for 1-D filters. 

Direct form realizations of 2-D denominator separable IIR filters have been attempted [11, 13], but have 
certain speed disadvantages. Block filtering techniques [9] with a combination of scattered look-ahead and de- 
composition based pipelining [2] can be used as an approach for implementation of 2-D denominator separable 
filters; this approach being carried out on each of the two separated domains of the denominator of the 2-D 
denominator separable filter. However the state update in the Block filters is based on clustered look-ahead [9] 

approach which does not necessarily guarantee stability and at the same time block structures are highly complex. 

In this paper, we show that, utilizing the SLA and DLA pipelining techniques, high-speed modular imple- 
mentation of separable-denominator stable 2-D IIR filters is indeed feasible. It may be noted that the various 
stable LA schemes recast the way the the output is generated by appropriate placement of the 1-D poles. The 
numerator does not play any role in stability considerations. Hence, if the original 1-D factors are stable to begin 
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with, application of any of the stable LA schemes to individual 1-D factors would also maintain stability for the 

overall 2-D filter. Block Processing for further speed-up is also feasible for the proposed architectures. 

II. Look-Ahead pipelining for 2-D Denominator-Separable IIR filters 

A denominator separable 2-D IIR filter transfer function is given by 

TT,7     yN_   _     A{zUZ2)     _LML)=Oai,iZl   z2-3 
H{Z^~ D{ZUZ2) - B(ZI)C(Z2) ~ EEoMr'iSo W l J 

II. 1. Clustered Look-Ahead Pipelining [1, 2, 6]: 

M-stage pipelining of an (Ni, N2)-th order separable-denominator 2-D IIR filter can be represented as, 

EMi v^A^ —i 
_       i=oEj,oai,Jzi  z2-3 

ENi   i     -i v^N2 
i=ObiZl    J2j=0CJZ2-J 

A(z1)Z2){l + rfi.pzj'1 + rfo.iz^1 + di^z^zz1 + h rfAf-LM-ifj"^"1^^ "^ 

H(Z1>ZV   ~   ^N,   t  _-i ^N2  7 (2a) 

/,   ,1     „-Af   ,   L -(Af+1)   , ,   . M+^-lw,   ,   „       -M   ,   „ -(M+l) ^Kf+N2-U 

where, dij's denote the coefficients of the extra numerator polynomial introduced due to the pipelining of the 

denominator [2, 6]. The multiplication complexity is (2A^i+M)(27V2-|-M) and the latch complexity is linear in M. 

The extra delay in producing output is M for each domain. It may be noted that this scheme may suffer from the 

same stability problems of its 1-D counterparts [2]. A Clustered approach that guarantees stability with minimum 

augmentation of order (MACLA) may be utilized [3]. However, finding the coefficients for MACLA appears to 

be somewhat cumbersome. Hence, in our examples we will use SLA and DLA which are briefly outlined next. 

II.2.  Scattered Look-Ahead Pipelining [2]: 

An equivalent M-stage pipelining of the same {N\, JV2)-th order recursive filter can be obtained by, 

_ A(zlyz2)(l + djfiZy 1 + d0>lz2 
1 + ditiz1 

lz2 
1 + h dNl(M-i),N3(M-i)Zi Nl(M  l)z2 

N^M  l)) 

~  (1 + bMz^M + b2Mz^M + ■■■ + bNlMz;N>M)(l + cMz2
M + c2MZ2~2M + ■■■+ cN2MZ2-N*M) 

The total multiplication complexity is (NiM+M+l)(N2M+M+l) and the latch complexity is square in M in each 

domain. The extra delay in producing output is Ni(M—l)+N2(M—1). However, if M is a power of 2, then using a 

decomposition technique [2],the total multiplications can be reduced to (27Vi+iVi log2 M+1)(2N2+N2 log2 M+l). 

II.3. Distributed Look-Ahead Pipelining [9] : 

For this recently proposed look-ahead scheme, the filter transfer function (2a) is transformed to the form 

 A{Zl)Z2){l + dlfiZ^ + dlAz^Z2-1 + -.- + dM+kLtM+kLZ^
M+k^z^

M+k^) 
H{zi,z2) = 

(1 + bMZ;
M + bM+klZ^M+k^ + ■■■ + bM+kLZ^M+k^)(l + CMZ^M + CM+klZ^M+k^ + ■■■ + CM+kLZ2^

M + 

(4) 
where, fci, k2, ■ ■ ■ are integers. It is easy to show that the look-ahead schemes in (2) and (3) are special cases of this 

general M-stage look-ahead approach. In [9], the stability conditions for a few low-M cases have been presented. 

The examples below will demonstrate that, when compared with SLA, this new scheme can produce stable 
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implementations with lower multiplication and latch complexities and reduced output delay. In our examples, 

&£ = Ni = N2 — N will be used. Clearly, if (M + &£,) < NM, this scheme would provide considerable savings 

over the scattered approach. 

III. Examples of Look-Ahead Pipelined Implementation of 2-D Denominator-Separable IIR Filters: 

In this Section, we show that for 2-D Denominator-Separable IIR filters, any of the pipelining schemes dis- 

cussed above can be easily adopted for high-speed implementation. Specifically, denominator-separable designs 

of many commonly occurring 2-D filters such as, Gaussian, Laplacian, Lowpass and Bandpass provide excellent 

match [7]. We provide two examples using Gaussian and Laplacian filters to show that, with separable denomina- 

tors in two domains, the recursive sections can be easily transformed to pipelinable forms using any of the forms 

in (2), (3) or (4). 

III.l. Example 1 : Gaussian Filter Implementation 

Consider a 4-stage (M = 4) implementation of a (4,4) order 2-D Gaussian IIR filter with the following 

coefficients, 

A{zi,z2) = 

0.00936980949545 -0.00126723735355 0.00825275276870 0.00489009121304' 
-0.0012672373559 0.000171389878746 -0.0011161589361 -0.0006613695040 
0.00825275276913 -0.00111615893404 0.00726887011928 0.00430710078143 
0.00489009121014 -0.00066136950242 0.00430710077865 0.00255213215053. 

(5) 

B(zi) = l-2.2195z1"1 + 2.0846zr2-0.9754z1
-3-|-0.19065zr4 

= (1 - 0.96486z!-1 + 0.4557z1
_2)(l - 1.2546z!-1 + 0.41834zr2) 

A B1(z1)B2(zl) 

(6a) 

(66) 

(6c) 

In polar form (z8- = r,-e±J'Äi), B{z\) has four roots (poles) with radii, r\ = 0.6758 and r2 = 0.6467 and angles, 
6\ = ±44.38 and B2 — ±14.18, respectively. Because of symmetry, C(z2) has identical coefficients as B{z\). 

Hence, the poles of C(z2) are identical to those of B(zi). Each second order of B{z\) and C(z2) are pipelined 
separately. Incidentally, the clustered approach produced unstable filter in this case (refer to the pole-zero plot in 
Fig. 1). Hence, the clustered implementation given in [6] will not be suitable for pipelining this particular filter. 
The scattered approach can certainly be used, but the coefficients in (6) also satisfies the stability conditions 

given in [9]. Hence, the recently proposed distributed look-ahead scheme [9] would provide stable filters with 
considerable hardware savings. Next we provide the coefficients for equivalent pipelined filter implementations 

using both SLA and DLA schemes. 

Scattered Look-Ahead Implementation : 

It can be shown that 4-stage pipelining of the second-order factors in (6b) have the following forms, 

1 _ (1 + 0.0195zr2 + 0.2077zf4)(l + 0.9649zf1 + 0.4557zf2) 

Bi(zi) ~ l + 0.4150zf4 + 0.0431zf8 

1 _ (1 + 0.7374zf2 + 0.1750z-4)(l + 1.2546z!-1 + 0.4183zr2) 

B2{zi) ~ l-0.1938z1-4 + 0.0306zf8 

Pipelining of C\{z2) and C2{z2) would also produce identical coefficients. 
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Distributed Look-Ahead Implementation  : 

In this case, 4-stage pipelining of the second-order factors in (6b) would have the following forms, 

_  (1 + Q.9649^1 + 0.4557^r2)(l + 0.0195zr2) 
and (8a) 

(86) 

Bi(zi) 1 + 0.2073zf4 + 0.0040*r6 

1      _  (1 + 1.2546z;-1 + 0.4183z1~2)(l + Q.7374^"2) 

B2(ZI) ~ i-o.3688zr4 + o.i29izr6 

Because of symmetry, C\(z2) and C2(z2) will also have identical coefficients. 

It may be emphasized here that both SLA and DLA implementations in (7) and (8), respectively, produce 
stable high speed structures. However, comparing the denominators as well as the numerator factors in (7) and 

(8), it easy to see that the recently proposed DLA scheme provides considerable savings in multiplication and 
latch complexities and reduced delay in output generation. The pole locations with 4-stage lookahead for this 

example are shown in Fig. 2. In Figs. 3 and 4, the signal flow diagrams are given for a pair of 2nd order blocks 

in two domains for 4-stage scattered and distributed look-ahead pipelining, respectively. Comparing the number 

of delays and the multipliers in Figs. 3 and 4 also it is obvious that DLA can offer reduced complexity than SLA. 

III.2.  Example 2 : Laplacian Filter Implementation 

In this case, a (4,4) order 2-D Laplacian IIR filter with the following coefficients are considered, 

A(zi,z2) = 

-0.00234823839532 
-0.00373345042666 
-0.02194869729514 
0.00165842866327 
-0.02470285791456 

-0.00391545411710 
0.00476642973501 
-0.02059991460608 
0.01338997088113 
-0.02800618927861 

-0.02106505604166 
-0.01976926214265 
-0.04640872036691 
0.1370918579269 

-0.09758570689236 

-0.00234522754996 
0.01122239739174 
0.14204249387362 
0.1639249127551 
0.11045024575180 

fl(zi) = 1 - 1.64180z1-
1 + 1.50063zf2 - 0.80133zf3 + 0.21866zr4 

= (1 - 0.48522!-1 + 0.5146zr2)(l - 1.1566zfx + 0.4249zf2) 

A B1(z1)B2{z1) 

-0.0230375942386 
-0.0264271437586 
-0.1034676446472 
0.09669575185083 
-0.1501644414553 

(9) 

(10a) 

(106) 

(10c) 

The radii and the angles of the roots of B(zi) are, n = 0.71736, r2 = 0.65185 and $i = ±70.23 and 92 = ±27.48, 
respectively. The poles of C(z2) also have the same values. Similar to Example 1, each second order of B(zi) and 

C(z2) are pipelined separately. The clustered approach of [6] again produced unstable filter in this case (due to 
B2(zi)). However, in this case also, the coefficients in (10b) satisfied the stability conditions of DLA [9]. Hence, 
both the scattered and distributed look-ahead pipelining methods can provide stable filters with DLA providing 
more hardware savings than SLA. The coefficients for scattered and distributed pipelining implementations for 
this example are given next. 

Scattered Look-Ahead Implementation : 

It can be shown that 4-stage pipelining of the second-order factors in (10b) have the following forms, 

1 _ (1 - 0.7938zf2 + 0.2648zr4)(l + Q.4852^-1 + 0.5146zr2) 
£1(21) ~ l-0.1005zr4 + 0.070l2r8 

1 _ (1 + 0.4879zr2 + 0.1805zj-4)(l + 1.1566zfx + 0.4249zf2) 

B2(zi) ~ l + 0.1231z1
_4 + 0.0326z1-8 

(11a) 

(116) 
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Ci(za) and C2(z2) would also have identical forms. 

Distributed Look-Ahead Implementation   : 

4-stage pipelining of the second-order factors in MDM nftv,» T     I    •     *,. 
look-ahead pipelining leads to the following * " PiPeHned * diStributed 

1 

1 
B2(z1) 

(1 + 0.4852z,-1 + 0.5146zr2)(l + 0.7938z,-^ 

1 - 0.3653zf4 - 0.2102zf6 

(1 + 1.1566z,-1 + 0.4249zr2)(l + 0.4879z,-21 

1 - 0.0575zf4 + 0.0881z- 

(12a) 

(126) 

^^^^^^TVrr- r?ole locations for the **■* io°k-ahead sch— ** ^is 
tions. Equation    1     andTl . It      l      <       ^      - that both SLA and DLA provide stable implementa- 

and reduced t^te^J^t"     I   1    ^ ^ " M ^ "» ^ ^ C°^ty 

will be included in ^ p»^^^     K,    ^^ ^"^d^"*«*» 2-D IIR niters. More exampl 
paper mcorporatmg block processing [10] for further improvement in throughput. 
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HO 3:   Implementation of the second-order blocks in both domains after 4-stages of scattered pipelining 
with decomposition technique inside the recursive loop. 

B? 
<?" 

? 
P^i     yl«,."z 

FIG 4:    Implementation of the second-order blocks in both domains after 4-stages of distributed pipelining 
with decomposition technique inside the recursive loop. 
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